mature wood
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Changqing Lu ◽  
Jun Wu ◽  
Qianqian Jiang ◽  
Yamei Liu ◽  
Liang Zhou ◽  
...  

AbstractThe proportion of juvenile wood affects the utilization of wood seriously, and the transition year of juvenile wood (JW) and mature wood (MW) plays a decisive role in the rotation and the modification of wood. To find out the demarcation of JW and MW, the tracheid length (TL) and microfibril angle (MFA) of early wood (EW) and late wood (LW) from four Chinese fir clones were measured by optical microscopy and X-ray diffraction. Then the data were analyzed by the k-means clustering method. The correlation and the differences among wood properties between JW and MW were compared. Results indicated that the LW showed better properties than that of EW, but the anatomical differences between EW and LW did not influence the demarcation of JW and MW. The cluster analysis of TL and MFA showed that the transition year was in the 16th year and the transition zone of EW and LW was different among clones. The MW has longer and wider tracheid, thicker cell walls, and smaller MFA. In terms of chemistry, MW had a higher content of holocellulose, α-cellulose, less content of extract, but no significant difference in lignin content compared with JW. The stabilization of chemical components was earlier than that of the anatomic properties. Correlation analysis showed that there were strong correlations between the chemical composition and anatomical characteristics in JW and MW. In general, compared with chemical components, anatomical indicators were more suitable for JW and MW demarcation. The differences and correlations between JW and MW properties provide a theoretical basis for wood rotation and planting.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Murzabyek Sarkhad ◽  
Futoshi Ishiguri ◽  
Ikumi Nezu ◽  
Bayasaa Tumenjargal ◽  
Yusuke Takahashi ◽  
...  

Abstract Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. are important forest tree species in Mongolia. The radial variations of wood anatomical characteristics, physical and mechanical properties were evaluated by linear or nonlinear mixed-effects models for effective wood utilization of those of conifers. Many of these wood properties either increased or decreased from the pith to the bark and then became nearly constant based on the selected models. The properties of mature wood were estimated by nonlinear mixed-effects models, suggesting that P. sylvestris and L. sibirica are suitable as structural lumber, P. sibirica can be used for furniture and other interior products, and P. obovata is suitable for structural lumber as well as for furniture or interior products.


IAWA Journal ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 475-485
Author(s):  
Efrida Basri ◽  
Ratih Damayanti ◽  
Atmawi Darwis ◽  
Saefudin ◽  
Imam Wahyudi

Abstract The Hibiscus macrophyllus tree is widely planted in Indonesia especially on Java Island. It has several advantages to be developed commercially as a community or plantation forest compared to the famous introduced species Falcataria moluccana and Anthocephalus spp., including faster growth, higher wood density, and better stem morphology (straighter, more rounded, and lesser branches). However, information about the basic properties of this wood grown in plantations is limited. This study aimed to investigate the anatomical properties of H. macrophyllus and their variation at three ages (8, 12 and 16 years old), as well as to predict the mature wood development by using radial variation in fiber length, microfibril angle (MFA), and wood density from pith toward the bark as the indicators. The wood samples were obtained from a community forest area at Ciamis Regency, West Java Province. Furthermore, anatomical characteristics were examined through wood slides following the IAWA List, while fibre and vessel element dimensions were measured through macerated specimens prepared by modified Franklin’s method. The MFA was determined by X-Ray Diffraction, while wood density was measured in line with British Standard 373-57. The results showed that the anatomical structures were not influenced by tree age, except for wood porosity, and fibre and vessel element dimensions. The 16-year-old tree tended to be semi-ring-porous, the younger trees were diffuse-porous, while the fiber and vessel element length, as well as the diameter, were decreased. Meanwhile, the wall thickness was increased. The fibre length, MFA, and wood density were useful indicators for wood maturity that seemed to be developed at about 11 years of age.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1277
Author(s):  
Qiulu Meng ◽  
Feng Fu ◽  
Jie Wang ◽  
Tuo He ◽  
Xiaomei Jiang ◽  
...  

Ray traits affect secondary xylem development and wood properties. Pinus massonia and Cunninghamia lanceolata, commercially important timber species, were chosen to study the differences in wood ray traits of juvenile versus mature wood. Seven ray traits, i.e., percentage of rays, ray spacing, ray number, uniseriate ray height, fusiform ray height, ray parenchyma cell length and ray tracheid length, as well as eight wood axial tissue traits, were investigated quantitatively. Intraspecific variations in ray traits and axial tissue traits between juvenile wood and mature wood were displayed in violin plots. The results showed that anatomical differences between juvenile wood and mature wood were significant for both ray traits and axial tissue traits. Juvenile wood generally possessed the larger percentage of rays, higher ray spacing and ray number, smaller ray height and shorter ray cells than mature wood. A positive correlation was present between the ray parenchyma cell length and ray tracheid length. Negative correlations of the ray number and ray spacing with uniseriate ray height were found. Additionally, the axial tracheid cell wall thickness all had Pearson’s correlations with ray spacing, ray number and ray parenchyma cell length.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6921-6932
Author(s):  
Tomislav Sinković ◽  
Branimir Jambreković ◽  
Tomislav Sedlar

The interpretation and presentation of research on the physical and mechanical properties of wood in the radial direction is important for the estimation of technological properties in primary wood processing. It is common practice to define the boundary between the juvenile and mature wood zone of tree growth because of the differences in wood properties in these two zones. The juvenile and mature wood zones can be determined statistically based on the significance of the difference in the properties in a particular zone. This paper presents the insufficiency in the statistical determination of the boundary between juvenile and adult wood. Such limitations detract from the potential value and technological exploitation of wood as raw material. Statistical tests yielded zones that were too wide for the transition of juvenile wood to mature wood. Representations of the distribution of properties in the radial direction also complement the knowledge for assessing the technological properties based on the researched use of the presentation of polynomials of the second degree and the display of the Tukey HSD test in the form of comparison tables. The graphical representations by groups of the tested annual rings of fir wood also help to assess the technological properties.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 512
Author(s):  
Yunpeng Wang ◽  
Rui Zhang ◽  
Zhichun Zhou

Schima superba is a precious broadleaf tree species that produces excellent timber. Analyzing the radial variation of wood anatomical properties within stems and determining the boundary between the juvenile and mature wood can provide a theoretical basis for the breeding and cultivation of S. superba. Herein, 30 54-year-old trees were used to analyze the radial variation of wood anatomical properties qualitatively. The correlation among wood properties was analyzed. On this basis, four types of model were used to predict the wood properties quantitatively, and the optimal segmentation model was used to determine the boundary between juvenile and mature wood. The results showed that the variation of the early stage (before the 20th year) was larger than that of the later stage (after the 20th year); moreover, the variation of the vessel features (9.56%) was greater than that of the fiber features (7.42%), the vessel lumen diameter (11.94%) and the fiber length (8.00%) had the most variation. There were three radial variation patterns in the wood properties. In the early stage, there was a significant positive correlation between the ring width and wood air-dry density (0.78) and wood basic density (0.89), and a significant negative correlation between the ring width and the fiber characters (−0.79~−0.93) and vessel characters (−0.64~−0.90). The growth models of Logistic and Richards were more suitable (R2 = 84.2%~95.2%) for the radial variation of wood anatomical properties than the nonlinear least square model (R2 = 67.7%~90.9%). The transition wood between juvenile and mature wood of S. superba was from the 11th to the 16th year based on aggregative indicators from the pith to bark at breast height. Finally, when taken together, the wood anatomical properties of S. superba had regular radial variation. Breeding programs need to consider both growth and wood anatomical properties in the early stage, but they can be neglected in the mature stage. The formation of mature wood of S. superba occurred after the 16th year.


2020 ◽  
Author(s):  
Laifu Luo ◽  
Yingying Zhu ◽  
Jinshan Gui ◽  
Tongmin Yin ◽  
Wenchun Luo ◽  
...  

Abstract Background: Juvenile wood (JW) and mature wood (MW) have distinct physical and chemical characters, reflecting the different wood formation over the tree life-span. However, the regulatory mechanisms that distinguish or modulate the characteristics of JW and MW in relation to each other have not been mapped. Using RNA sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS), we analyzed wood properties associated with JW and MW forming tissue from Populus trees with an identical genetic background.Results: JW and MW of Populus displayed different wood properties as the result of significant differences in transcriptional programs and patterns of DNA methylation. Differences were concentrated in gene networks involved in regulating hormonal signaling pathways responsible for auxin distribution and brassinosteroids biosynthesis as well as genes active in regulating cell expansion and secondary cell wall biosynthesis. An observed correlation between gene expression profiling and DNA methylation indicated that DNA methylation affected expression of the genes related to auxin distribution and brassinosteroids signal transduction, cell expansion in JW and MW formation. Conclusions: Auxin distribution, brassinosteroids biosynthesis and signaling play critical roles in formation of JW and MW. DNA methylation is involved in formatting the transcriptional programs in different development phases which contribute to JW and MW formation. The study sheds light to better understand the molecular networks underlying regulation of wood properties which could inform improvement of wood formation.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7330-7341
Author(s):  
Ewa Fabisiak ◽  
Beata Fabisiak ◽  
Andrzej Krauss

The radial variation was examined for tracheid lengths of Norway spruce (Picea abies (L.) Karst.), European larch (Larix decidua Mill.), and Scots pine (Pinus sylvestris L.) wood from dominant trees coming from an even-aged stand, and growing under identical forest site and climatic conditions. The measurements were completed on macerated material. The variation of tracheid lengths in annual rings from the core to the bark was used for determination of the border between the juvenile and mature wood in the trunk cross-section. The boundary age between the juvenile and mature wood zones established for the examined species was comparable, as it was 25 annual rings for Scots pine and 29 for European larch and for Norway spruce. In the juvenile zone, the tracheid lengths increased 2.2-fold in Norway spruce wood, while in Scots pine and European larch wood it was approximately 1.7-fold. By contrast, in the mature wood zone the tracheid lengths was stabilized at a certain level, showing slight fluctuations. The differences in the tracheids length of early and late wood in the examined annual rings were also determined, and it was established that for the majority of annual rings they are statistically significant (p<0.05).


Sign in / Sign up

Export Citation Format

Share Document