scholarly journals Redefining the Distributional Boundaries and Phylogenetic Relationships for Ctenomids From Central Argentina

2021 ◽  
Vol 12 ◽  
Author(s):  
Cecilia Soledad Carnovale ◽  
Gabriela Paula Fernández ◽  
Mariano Lisandro Merino ◽  
Matías Sebastián Mora

With about 68 recognized living species, subterranean rodents of the genus Ctenomys are found in a multiplicity of habitats, from the dunes of the Atlantic coast to the Andes Mountains, including environments ranging from humid steppes of Pampas to the dry deserts of Chaco region. However, this genus needs an exhaustive reevaluation of its systematic and phylogenetic relationships regarding the different groups that compose it. This knowledge is essential to propose biodiversity conservation strategies both at species level and at higher hierarchical levels. In order to clarify the taxonomy and the recent evolutionary history from populations of Ctenomys in the Pampas region, Argentina, phylogenetic relationships among them were evaluated using mitochondrial DNA sequences: gene encoding cytochrome b protein (1,140 bp) and the non-coding D-loop region (434 bp). To infer the divergence times inside the Ctenomys clade, a Bayesian calibrate tree using fossil remains data from different families within Caviomorpha was performed at first. Secondly, that calibration data was used as priors in a new Bayesian phylogenetic inference within the genus Ctenomys. This phylogenetic tree emphasized on species currently distributed on the Pampas region, more precisely considering both the talarum and mendocinus groups. Bayesian inferences (BI) were integrated with the results of a Maximum Likelihood approach (ML). Based on these results, the distributional limits of the mendocinus and talarum groups appear to be related to the physiognomy of the Pampas region soils. On the other hand, the validity of C. pundti complex as a differentiated species of C. talarum is debated. According to previous evidence from morphological and chromosomal studies, these results show a very low divergence between those species that originally were classified within the talarum group. Mitochondrial DNA sequences from populations associated with these putative species have not recovered as reciprocal monophyletic groups in the phylogenetic analyses. In conclusion, C. talarum and C. pundti complex might be considered as the same biological species, or lineages going through a recent or incipient differentiation process. The results obtained in this study have important implications for conservation policies and practices, since both species are currently categorized as Vulnerable and Endangered, respectively.

2012 ◽  
Vol 62 (1) ◽  
pp. 97-108 ◽  
Author(s):  
M. Westerman ◽  
B.P. Kear ◽  
K. Aplin ◽  
R.W. Meredith ◽  
C. Emerling ◽  
...  

1986 ◽  
Vol 6 (9) ◽  
pp. 3262-3267
Author(s):  
D D Chang ◽  
D A Clayton

Transcription of the heavy strand of mouse mitochondrial DNA starts from two closely spaced, distinct sites located in the displacement loop region of the genome. We report here an analysis of regulatory sequences required for faithful transcription from these two sites. Data obtained from in vitro assays demonstrated that a 51-base-pair region, encompassing nucleotides -40 to +11 of the downstream start site, contains sufficient information for accurate transcription from both start sites. Deletion of the 3' flanking sequences, including one or both start sites to -17, resulted in the initiation of transcription by the mitochondrial RNA polymerase from alternative sites within vector DNA sequences. This feature places the mouse heavy-strand promoter uniquely among other known mitochondrial promoters, all of which absolutely require cognate start sites for transcription. Comparison of the heavy-strand promoter with those of other vertebrate mitochondrial DNAs revealed a remarkably high rate of sequence divergence among species.


2014 ◽  
Vol 62 (8) ◽  
pp. 638 ◽  
Author(s):  
Farrokh Ghahremaninejad ◽  
Mehrshid Riahi ◽  
Melina Babaei ◽  
Faride Attar ◽  
Lütfi Behçet ◽  
...  

Verbascum is one of the main genera of Scrophulariaceae, but delimitation and phylogenetic relationships of this genus are unclear and have not yet been studied using DNA sequences. Here, using four selected molecular markers (nrDNA ITS and the plastid spacers trnS/G, psbA-trnH and trnY/T), we present a phylogeny of Verbascum and test previous infrageneric taxonomic hypotheses as well as its monophyly with respect to Scrophularia. We additionally discuss morphological variation and the utility of morphological characters as predictors of phylogenetic relationships. Our results show that while molecular data unambiguously support the circumscription of Verbascum inferred from morphology, they prove to be of limited utility in resolving infrageneric relationships, suggesting that Verbascum ‘s high species diversity is due to rapid and recent radiation. Our work provides phylogenetic estimation of the genus Verbascum using molecular data and can serve as a starting point for future investigations of Verbascum and relatives.


1999 ◽  
Vol 74 (4) ◽  
pp. 135-139 ◽  
Author(s):  
Masanao Honda ◽  
Hidetoshi Ota ◽  
Mari Kobayashi ◽  
Tsutomu Hikida

Sign in / Sign up

Export Citation Format

Share Document