scholarly journals Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function

2017 ◽  
Vol 8 ◽  
Author(s):  
Hongru Zhang ◽  
Zheng Li ◽  
Li Wang ◽  
Gaofei Tian ◽  
Jun Tian ◽  
...  
2020 ◽  
Vol 21 (24) ◽  
pp. 9613
Author(s):  
Wurood Hantoosh Neamah ◽  
Philip Brandon Busbee ◽  
Hasan Alghetaa ◽  
Osama A. Abdulla ◽  
Mitzi Nagarkatti ◽  
...  

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR and a known carcinogen. While AhR activation by TCDD leads to significant immunosuppression, how this translates into carcinogenic signal is unclear. Recently, we demonstrated that activation of AhR by TCDD in naïve C57BL6 mice leads to massive induction of myeloid derived-suppressor cells (MDSCs). In the current study, we investigated the role of the gut microbiota in TCDD-mediated MDSC induction. TCDD caused significant alterations in the gut microbiome, such as increases in Prevotella and Lactobacillus, while decreasing Sutterella and Bacteroides. Fecal transplants from TCDD-treated donor mice into antibiotic-treated mice induced MDSCs and increased regulatory T-cells (Tregs). Injecting TCDD directly into antibiotic-treated mice also induced MDSCs, although to a lesser extent. These data suggested that TCDD-induced dysbiosis plays a critical role in MDSC induction. Interestingly, treatment with TCDD led to induction of MDSCs in the colon and undetectable levels of cysteine. MDSCs suppressed T cell proliferation while reconstitution with cysteine restored this response. Lastly, blocking CXC chemokine receptor 2 (CXCR2) impeded TCDD-mediated MDSC induction. Our data demonstrate that AhR activation by TCDD triggers dysbiosis which, in turn, regulates, at least in part, induction of MDSCs.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4729-4739 ◽  
Author(s):  
Dan Ilkovitch ◽  
Diana M. Lopez

Abstract The transmembrane isoform of mucin 1 (MUC1/TM) is a well-recognized tumor antigen, contributing to tumorigenesis and immune evasion. Although MUC1/TM has been correlated with malignancy, we have previously reported on antitumor properties and prevention of tumor development by a secreted splice variant of MUC1 (MUC1/sec). Because myeloid-derived suppressor cells (MDSCs) play a critical role in tumor-induced immunosuppression, we investigated their recruitment by tumor cells expressing either MUC1/TM or MUC1/sec. DA-3 tumor cells expressing MUC1/sec recruit dramatically lower levels of MDSCs, relative to MUC1/TM-expressing DA-3 cells. Because MUC1/sec was previously shown to down-regulate tumor expression of urokinase plasminogen activator (uPA), a protease linked to tumor aggressiveness and metastasis, the potential role of uPA in MDSC recruitment was investigated. Tumor-derived uPA is capable of recruiting MDSCs, and correlates with tumor development. In addition to diminishing recruitment of MDSCs, the effect of MUC1/sec on MDSC-suppressive mechanisms was investigated. MUC1/sec, or its unique immunoenhancing peptide, is capable of blocking expression of arginase 1 and production of reactive oxygen species in MDSCs, implicated in the suppression of T cells. These findings demonstrate a new mechanism of MDSC recruitment, and provide evidence that MUC1/sec has antitumor properties affecting MDSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 788-788 ◽  
Author(s):  
Sheng Wei ◽  
Xianghong Chen ◽  
Junmin Zhou ◽  
Ling Zhang ◽  
Nicole R. Fortenbery ◽  
...  

Abstract Abstract 788 Understanding the pathophysiology of myelodysplastic syndrome (MDS) is limited by a complex molecular mechanism and lack of an adequate animal model that recapitulates the role of inflammation in the abnormal hematopoiesis. We recently showed that patients with MDS have expansion of inflammation-related hematopoietic suppressive cells called immature myeloid-derived suppressor cells (MDSC) that display direct cytotoxic and suppressive effects on autologous hematopoietic progenitor cells (HPCs). Expansion of bone marrow (BM) MDSCs contributed to the production of inflammatory cytokines and reduced HPC survival underlying BM failure in lower risk patients. Here we provide evidence that MDSC activation, expansion and development is driven by overexpression of inflammatory-related signaling molecules, myeloid-related protein 8 (MRP8, encoded by S100A8) and MRP14 (encoded by S100A9). Both MRP proteins serve as the native endogenous ligands for Toll-like receptor 4 (TLR4), which is an important damage-associated molecular pattern (DAMP) mediating inflammatory response. We found higher expression of MRP8 and MRP14 in BM mononuclear cells from MDS patients compared to healthy donors, in whom these proteins were not detectable. High surface expression of both TLR2 and TLR4 in MDS MDSCs compared to healthy donor MDSCs confirmed that this signaling pathway is activated in MDS. Inhibition of MRP8/MRP14 proteins in MDSCs using specific shRNAs dramatically attenuated IL-10 and TGF-β production and rescued BFU-E and CFU-GM colony formation of autologous bone marrow progenitors. These data show that inflammation-associated MRP8/MRP14 expression plays a critical role in the suppressive activities of MDS MDSCs. We therefore generated S100A9 transgenic mice (S100A9Tg) overexpressing the murine MRP14 homologue and investigated the role of this protein in bone marrow failure. Significant MDSC accumulation was evident in the BM of S100A9Tg mice by 6 weeks, but not in S100 knockout (KO) or wild type (WT) mice. Similar to human MDS, MDSCs from S100A9Tg mice, but not S100KO or WT mice, significantly inhibited BFU-E colony formation. Depletion of MDSCs in vitro rescued BM colony formation in the S100A9Tg mice indicating that the BM suppression is mediated by MDSC cells. TGF-β and IL-10 secretion was significantly increased in S100A9Tg mice, substantiating the role of S100A9 as an essential inflammatory factor that regulating MDSC suppressive activity. Analogous to human MDS, 6-month old S100A9Tg mice developed ineffective hematopoiesis with severe anemia, leukopenia, and thrombocytopenia accompanied by MDS-like morphological features. BM aspirates and core biopsies from S100A9Tg mice were hypercellular with trilineage cytological dysplasia characteristic of MDS. Treatment with ATRA, which induced the differentiation of MDSCs rescued hematopoiesis in S100A9Tg mice. Our findings indicate that primary BM expansion of MDSC is sufficient to perturb hematopoiesis and result in the development of MDS, supporting the notion of microenvironment-conducive oncogenesis. S100A9Tg transgenic mice provide a novel in vivo model of human MDS for target discovery and testing of novel therapeutics. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document