scholarly journals Myeloid Clonal Infiltrate Identified With Next-Generation Sequencing in Skin Lesions Associated With Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia: A Case Series

2021 ◽  
Vol 12 ◽  
Author(s):  
Grégoire Martin de Frémont ◽  
Pierre Hirsch ◽  
Santiago Gimenez de Mestral ◽  
Philippe Moguelet ◽  
Yoan Ditchi ◽  
...  

BackgroundMyelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are associated with cutaneous manifestations. Next-generation sequencing (NGS) is a tool capable of identifying clonal myeloid cells in the skin infiltrate and thus better characterize the link between hematological diseases and skin lesions.ObjectiveTo assess whether skin lesions of MDS/CMML are clonally related to blood or bone marrow cells using NGS.MethodsComparisons of blood or bone marrow and skin samples NGS findings from patients presenting with MDS/CMML and skin lesions in three French hospitals.ResultsAmong the 14 patients recruited, 12 patients (86%) had mutations in the skin lesions biopsied, 12 patients (86%) had a globally similar mutational profile between blood/bone marrow and skin, and 10 patients (71%) had mutations with a high variant allele frequency (>10%) found in the myeloid skin infiltrate. Mutations in TET2 and DNMT3A, both in four patients, were the most frequent. Two patients harbored a UBA1 mutation on hematopoietic samples.LimitationsLimited number of patients and retrospective collection of the data. Blood and skin sampling were not performed at the exact same time point for two patients.ConclusionSkin lesions in the setting of MDS/CMML are characterized by a clonal myeloid infiltrate in most cases.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Claudia Haferlach ◽  
Beray Kazak ◽  
Sonja Schindela ◽  
...  

Abstract Abstract 417 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Here, we analyzed 81 CMML cases (45 CMML-1, 36 CMML-2). In chromosome banding analysis 59/76 (77.6%) patients showed a normal karyotype (data not availabel in 5 cases). Recurrent chromosome aberrations were trisomy 8 (n=6; 7.9%), monosomy 7 (n=3; 3.9%), and loss of the Y-chromosome (n=5; 6.6%). Fluorescence in situ hybridization (FISH) detected the deletion of one allele of the TET2 gene in 4/71 cases (5.6%). Thus, the majority of cases can not be genetically characterized by these techniques. Therefore, we applied next-generation sequencing (NGS) technology to investigate 7 candidate genes, represented by 43 PCR-products, at known mutational hotspot regions, i.e. CBL (exons 8 and 9), JAK2 (exons 12 and 14), MPL (exon 10), NRAS (exons 2 and 3), and KRAS (exons 2 and 3). In addition, complete coding regions were analyzed for RUNX1 (beta isoform) and TET2. NGS was performed using 454 FLX amplicon chemistry (Roche Diagnostics Corporation, Branford, CT). The median number of base pairs sequenced per patient was 9.24 Mb. For each target gene a median of 911 reads was generated (coverage range: 736-fold to 1606-fold). This approach allowed a high-sensitive detection of molecular mutations, e.g. detecting the JAK2 V617F mutation down to 1.16% of reads. In total, 146 variances were detected by this comprehensive molecular mutation screening (GS Amplicon Variant Analyzer software version 2.0.01). In 80.4% of variances consistent results were obtained after confirming NGS mutations with melting curve analysis and conventional sequencing. In the remaining discrepant variances (19.6%) NGS deep-sequencing outperformed conventional methods due to the higher sensitivity of the platform. After excluding 19 polymorphisms or silent mutations 127 distinct mutations in 61/81 patients (75.3%) were detected: CBL: n=21 point mutations and one deletion (18 bp) found in 20 cases (24%); JAK2: n=8 mutations (V617F) found in 8 cases (9.8%); MPL: no mutations found; NRAS: n=23 mutations found in 18 cases (22.2%); KRAS: n=12 mutations found in 10 cases (12.3%); RUNX1: n=6 point mutations and one deletion (14 bp) found in 7 cases (8.6%); and TET2: n=49 point mutations and 6 deletions (2-19 bp; 5/6 out-of-frame) found in 41 cases (50.6%). Furthermore, in 21 TET2-mutated cases 11 mutations previously described in the literature were detectable, whereas 28 cases carried novel mutations (n=28). In the cohort of TET2-mutated cases 17/41 (41.3%) patients harbored TET2 abnormalities as sole aberration. Interestingly, CBL mutations were found to be significantly associated with TET2 mutations (Fisher's exact test, p=0.008). In 17 of 20 (85.0%) CBL-mutated cases TET2 abnormalities were concomitantly observed. In contrast, no significant associations were found between any of the point mutations or deletions and the karyotype. There were also no associations observed between molecular aberrations and the diagnostic categories CMML-1 and CMML-2. With respect to clinical data a trend for better outcome was seen for patients that carried either or both TET2 and CBL mutations (median OS 130.4 vs. 17.3 months, alive at 2 yrs: 72.0% vs. 43.9%; p=0.13). In conclusion, 75.3% of CMMLs harbored at least one molecular aberration. In median 2 mutations per case were observed. Compared to limited data from the literature we detected not only a higher frequency of CBL mutations, but also add data on novel TET2 mutations. In particular, comprehensive NGS screening here for the first time has demonstrated its strength to further genetically characterize and delineate prognostic groups within this type of hematological malignancy. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Weiss:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


2010 ◽  
Vol 28 (24) ◽  
pp. 3858-3865 ◽  
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Hans-Ulrich Klein ◽  
Sonja Schindela ◽  
Tamara Weiss ◽  
...  

Purpose Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Thus far, data on a comprehensive cytogenetic or molecular genetic characterization are limited. Patients and Methods Here, we analyzed 81 thoroughly characterized patients with CMML (CMML type 1, n = 45; CMML type 2, n = 36) by applying next-generation sequencing (NGS) technology to investigate CBL, JAK2, MPL, NRAS, and KRAS at known mutational hotspot regions. In addition, complete coding regions were analyzed for RUNX1 (β isoform) and TET2 aberrations. Results Cytogenetic aberrations were found in 18.2% of patients (14 of 77 patients). In contrast, at least one molecular mutation was observed in 72.8% of patients (59 of 81 patients). A mean of 1.6 mutations per patient was observed by this unprecedented screening. In total, 105 variances were detected by this comprehensive molecular screening. After excluding known polymorphisms or silent mutations, 82 distinct mutations remained (CBL, n = 15; JAK2V617F, n = 8; MPL, n = 0; NRAS, n = 10; KRAS, n = 12; RUNX1, n = 7; and TET2, n = 41). With respect to clinical data, a better outcome was seen for patients carrying TET2 mutations (P = .013). Conclusion The number of molecular markers used to categorize myeloid neoplasms is constantly increasing. Here, NGS screening has been demonstrated to support a comprehensive characterization of the molecular background in CMML. A pattern of molecular mutations translates into different biologic and prognostic categories of CMML.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2554-2554
Author(s):  
Clara Ricci ◽  
Elena Trombetta ◽  
Giorgia Saporiti ◽  
Wilma Barcellini ◽  
Alessandra Freyrie ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) represents a diagnostic and therapeutic challenge characterized by highly heterogeneous clinical and laboratory aspects, contrasting from mainly dysplastic (MD) to predominantly proliferative (MP) in different patients. Although no specific cytogenetic or molecular aberration has been associated to CMML, next generation sequencing (NGS) has recently led to the discovery of at least one lesion in up to 90% of patients. Nonetheless, the role of the identified genetic aberrations in CMML onset and progression remains to be clarified. In a series of 40 consecutive patients we previously reported a higher frequency of RAS and JAK2 mutations and a shorter survival in those with MP- than in those with MD-disease. Furthermore, paired samples analysis showed RAS mutations acquisition in concomitance with progression from MD- to MP-CMML, suggesting these lesions as second hits that confer a proliferative advantage to the malignant clone, leading to poor outcome. In addition to these findings, a highly significant shorter life expectation in the MP-variant of CMML was more recently confirmed in an extended population of 74 patients (p=0.0005), further supporting the association of molecular acquisition of gene aberrations with disease progression. By comprehensive next generation sequencing (NGS) of selected genes, here we aimed to further investigate the spectrum of aberrations contributing to CMML development and progression and to examine whether MD- and MP-CMML may be also discriminated at the molecular level. We designed a NGS study (Oxford Gene Technology, Oxford UK) of 44 genes in DNA prepared from MNCs from 12 CMML patients after obtaining informed consent. Of the 21 samples analyzed, 17 were consecutively collected from 9 patients at the time of MD-CMML and later on during the disease course, showing either long lasting stable MD-CMML disease (median follow-up of 102 month), or progression to MP-CMML or AML, and 4 more were obtained from patients with MP-CMML (2 with previous MD-phase). In some patients, DNA prepared from purified CD3+ cells selected by FACS cell sorting was also analyzed. Candidate mutations were validated by Sanger sequencing. Deep sequencing analysis confirmed TET2 mutations as the most frequent (10/12 patients, 83%) and, the earliest known event in CMML, being present since time of referral in 100% of our cases with sequential samples, supporting their possible role of initiating lesions in CMML. Overall, 9 patients harbored frameshift/nonsense mutations and 1 had an essential splice site substitution. Non-synonymous variations of yet unknown origin were detected in 3 cases while in 1 case the substitution found in MNCs DNA was identified by direct sequencing also in DNA from buccal swab and thus annotated as a SNP. Other documented mutations in variable proportions involved ASXL1, SRSF2, SF3B1, EZH2, CBL, DNMT3A, MPL, NOTCH1, NOTCH2, N- and K-RAS. Among patients who were investigated with sequential samples collected at different time points and/or different disease phases, TET2, SRSF2 and ASXL1 mutations were documented from the first presentation in all cases, suggesting their acquisition as early events possibly driving molecular mechanisms of disease onset. In contrast, besides RAS mutations, which were detected at the time of disease progression from the MD- to the MP-variant in 2 patients, other aberrations possibly associated with disease evolution included EZH2 and CBL mutations, both detected in a small fraction of cells at diagnosis but significantly expanding after progression to MP-CMML. Of note, in one case harboring TET2, ASXL1, EZH2 and CBL concomitant mutations the sequencing of DNA from purified CD3+ cells unveiled the presence of TET2, ASLX1 and CBL mutations also in a significant fraction of T-lymphocytes, suggesting the aberration to possibly arise in a multipotent progenitor, whereas the EZH2 mutation appeared restricted to the myeloid lineage. A combined analysis of sequential samples and single-cell-derived colonies is currently ongoing to better elucidate clonal evolution in CMML, which in turn could help the improvement of disease classification as well as the early identification of patients at risk of disease evolution. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 32 (15_suppl) ◽  
pp. 7051-7051
Author(s):  
Priyanka Priyanka ◽  
Ashita Sinha ◽  
Joseph Khoury ◽  
Keyur Patel ◽  
Mark Routbort ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document