scholarly journals Satellite Tracking Can Inform Population-Level Dispersal to Foraging Grounds of Post-nesting Kemp’s Ridley Sea Turtles

2020 ◽  
Vol 7 ◽  
Author(s):  
Christian Gredzens ◽  
Donna J. Shaver
2021 ◽  
pp. 104063872110018
Author(s):  
Justin R. Perrault ◽  
Michael D. Arendt ◽  
Jeffrey A. Schwenter ◽  
Julia L. Byrd ◽  
Kathryn A. Tuxbury ◽  
...  

Blood glucose measurements provide important diagnostic information regarding stress, disease, and nutritional status. Glucose analytical methodologies include dry chemistry analysis (DCA) of plasma and point-of-care (POC) glucometer analysis of whole blood; however, these 2 methods differ in cost, required sample volume, and processing time. Because POC glucometers use built-in equations based on features of mammalian blood to convert whole blood measurements to plasma equivalent units, obtained glucose data must be compared and validated using gold-standard chemistry analytical methodology in reptiles. For in-water, trawl-captured, immature Kemp’s ridley sea turtles ( Lepidochelys kempii) from Georgia, USA, we observed significant, positive agreement between the 2 glucose determination methods; however, the glucometer overestimated glucose concentrations by 1.4 mmol/L on average in comparison to DCA and produced a wider range of results. The discordance of these results suggests that POC glucometer glucose data should be interpreted in the context of methodology- and brand-specific reference intervals along with concurrent packed cell volume data.


Copeia ◽  
2005 ◽  
Vol 2005 (2) ◽  
pp. 393-398 ◽  
Author(s):  
Alyssa A. Geis ◽  
William J. Barichivich ◽  
Thane Wibbels ◽  
Michael Coyne ◽  
Andre M. Landry ◽  
...  

2014 ◽  
Vol 25 (1) ◽  
pp. 57-67 ◽  
Author(s):  
KA Bjorndal ◽  
J Parsons ◽  
W Mustin ◽  
AB Bolten

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173999 ◽  
Author(s):  
Larisa Avens ◽  
Lisa R. Goshe ◽  
Lewis Coggins ◽  
Donna J. Shaver ◽  
Ben Higgins ◽  
...  

1994 ◽  
Vol 72 (8) ◽  
pp. 1403-1408 ◽  
Author(s):  
Erich K. Stabenau ◽  
Thomas A. Heming

We determined the in vitro respiratory and acid–base properties of blood and tissue from Kemp's ridley sea turtles (Lepidochelys kempi). Blood O2 dissociation curves of ridley turtles were sigmoid, with a P50 of 31.2 ± 0.3 (mean ± SD) torr at 25 °C and pH 7.51. Increments in temperature or [Formula: see text] were associated with a shift of the O2 dissociation curves to the right and, hence, a reduction in haemoglobin–O2 binding affinity. The apparent heat of oxygenation, which is a measure of the temperature sensitivity of haemoglobin–O2 affinity, was −10.5 kcal/mol O2. The degree of cooperativity of O2 for hemoglobin binding sites, as measured by the Hill coefficient, increased at higher temperatures (20–30 °C at a [Formula: see text] of 37 torr), but was unaffected by changes in [Formula: see text] (37–52 torr at 25 °C). The CO2-Bohr effect was −0.34 torr/pH unit. The CO2 capacitance coefficient of whole blood and plasma declined as a function of increased [Formula: see text] (22 °C). Non-bicarbonate buffer capacities (22 °C) were 19.7, 18.5, and 6.4 slykes for whole blood, true plasma, and separated plasma, respectively. The skeletal muscle myoglobin content was 3.1 ± 0.84 mg∙g−1 of tissue. The respiratory and acid–base properties of blood and tissue from Kemp's ridley sea turtles are consistent with those of species that utilize lung O2 stores during long-term aerobic dives. The enhanced haemoglobin–O2 temperature sensitivity exhibited by the ridley turtle could be a physiological adaptation for life in coastal environments that typically undergo substantial fluctuations in temperature.


2020 ◽  
Vol 43 ◽  
pp. 121-131
Author(s):  
MM Samuelson ◽  
EE Pulis ◽  
C Ray ◽  
CR Arias ◽  
DR Samuelson ◽  
...  

The impact of the intestinal and fecal microbiome on animal health has received considerable attention in recent years and has direct implications for the veterinary and wildlife rehabilitation fields. To examine the effects of rehabilitation on the microbiome in Kemp’s ridley sea turtles Lepidochelys kempii, fecal samples from 30 incidentally captured juveniles were collected during rehabilitation. Samples were analyzed to determine alpha- (α) and beta- (β) diversity as well as the taxonomic abundance of the fecal microbiota during rehabilitation and in response to treatment with antibiotics. The fecal microbial communities of animals housed in rehabilitation for a ‘short-term’ stay (samples collected 0-9 d post-capture) were compared with ‘long-term’ (samples collected 10+ d post-capture) and ‘treated’ groups (samples collected from turtles that had received antibiotic medication). Results of this study indicate that the most dominant phylum in fecal samples was Bacteroidetes (relative abundance, 45.44 ± 5.92% [SD]), followed by Firmicutes (26.62 ± 1.58%), Fusobacteria (19.49 ± 9.07%), and Proteobacteria (7.39 ± 1.84%). Similarly, at the family level, Fusobacteriaceae (28.36 ± 17.75%), Tannerellaceae (15.41 ± 10.50%), Bacteroidaceae (14.58 ± 8.48%), and Ruminococcaceae (11.49 ± 3.47%) were the most abundant. Our results indicated that both antibiotic-treated and long-term rehabilitated turtles demonstrated a significant decrease in β-diversity when compared to short-term rehabilitated turtles. Our results likewise showed that the length of time turtles spent in rehabilitation was negatively correlated with α- and β-diversity. This study demonstrates the importance of a judicious use of antibiotics during the rehabilitation process and emphasizes the importance of limiting the length of hospital stays for sick and injured sea turtles as much as possible.


Sign in / Sign up

Export Citation Format

Share Document