scholarly journals Contemporary Progresses in Ultrasonic Welding of Aluminum Metal Matrix Composites

2021 ◽  
Vol 8 ◽  
Author(s):  
Senthil Kumaran Selvaraj ◽  
Kathiravan Srinivasan ◽  
Utkarsh Chadha ◽  
Rajat Mishra ◽  
Kurane Arpit ◽  
...  

Graphical AbstractA Brief Review of the Ultrasonic welding process flow and sequence for joining aluminium metal matrix composite.

2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


Author(s):  
Raj Kumar Goswami ◽  
Dinesh Shringi ◽  
Kedar Narayan Bairwa

Abstract Aluminum composite matrix materials are regarded as the most popular type of composite materials. Metal matrix composites made of aluminum have better mechanical and thermal properties, including a higher strength-to-weight ratio, tensile strength, hardness, and a low coefficient of thermal expansion. In various types of applications viz., automobile, aviation, the thermal characterization of aluminum metal matrix composites has increased. Thermal conductivity as a function of temperature, thermal diffusivity, and the thermal gradient is one of the essential thermal characteristics of aluminum metal matrix composites needed to understand the material's behavior. The current work evaluated thermal conductivity as a product of thermal diffusivity, density, and specific heat for Al6061/Ni/Cr hybrid nano metal matrix composites from 50°C to 300°C. Al6061 based metal matrix composite reinforced with varying wt.% of Ni and Cr nanoparticles whereas fixed wt.% of graphene and Mg added to improve thermal conductivity, self-lubrication, and wettability. Thermal diffusivity, specific heat, and density were evaluated using laser flash apparatus (LFA 447), differential scanning calorimetry (DSC), and Archimedes principle, respectively. Results revealed that the thermal conductivity of fabricated composites increases with Ni, Cr, Mg, and graphene nanoparticles. With further expansion of reinforced particles of Ni and Cr, the thermal conductivity decreases. Finite element analysis (FEA) has been conducted to determine the thermal gradient and thermal flux using experimental values such as density, thermal conductivity, specific heat, and enthalpy at various temperature ranges to validate the experimental results.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


2021 ◽  
Author(s):  
Vipin Sharma ◽  
Yogesh Dewang ◽  
Pardeep Kumar Nagpal ◽  
Suresh Kumar

Abstract Metal matrix composites are an important class of material that is developing rapidly to fulfil the diversified engineering requirements. The metal matrix composites are attractive owing to superior properties as compared to monolithic material. Their properties are dependent on various factors and fabrication techniques. The metal matrix composites are associated with several issues which hinder their full potential. In the present study friction stir processing is applied on the metal matrix composite as a post-processing operation. The friction stir processing offers many advantages owing to the solid-state nature of the processing. Stir cast metal matrix composites are prepared by using zircon sand particles of 50 µm in the matrix of LM13 aluminium alloy. The friction stir processing is applied on the metal matrix plates at a constant rotational speed and traverse speed of 1400 rpm and 63 mm/min, respectively. Multiple passes of friction stir processing are applied to elucidate the effect of the number of passes on microstructural modification. Microstructural examination showed a significant improvement in eutectic silicon morphology and distribution of zircon sand particles. A more than 5 times reduction as compared to the initial size was observed in the zircon sand particles after four passes of friction stir processing. The processed metal matrix composite also exhibits improvement in tensile strength and hardness.


Sign in / Sign up

Export Citation Format

Share Document