scholarly journals Review of Self-sensing Capability of Ultra-high Performance Concrete

2021 ◽  
Vol 8 ◽  
Author(s):  
Jinkang Lian ◽  
Chao Hu ◽  
Tengfei Fu ◽  
Yulin Wang

Ultra-high performance concrete (UHPC) has the inherent potential to self-sensing capability due to its inclusion of steel fibers or other electrically conductive materials. Many studies have investigated the electrical and piezoresistive properties of UHPC. With the incorporation of micro steel fibers, carbon nanotubes, carbon nanofibrils, or nano graphite platelets, it opens up great potential to allow UHPC to effectively sense stress, strain, and crack damage. Therefore, the UHPC-based structures can achieve the functionality of structure health monitoring (SHM). This article reviews the recent advances in self-sensing capability of various UHPC-based materials with the focus on sensing capability and mechanisms. Future applications and challenges are also discussed.

2020 ◽  
Vol 858 ◽  
pp. 182-187
Author(s):  
Yu Dong Han ◽  
Zhen Bo Wang ◽  
Zi Jie Hong ◽  
Jian Ping Zuo ◽  
Chang Liu ◽  
...  

The brittleness and easiness to crack expose marine concrete to serious durability issues. Engineered Cementitious Composites (ECC), as a new generation of ultra high performance concrete, is expected to overcome the strain-softening properties of traditional concrete and realize function of crack-width control. In this paper, the sulfate erosion of ECC under drying-wetting cycles was modelled in laboratory test. And the compression test on cylinders after exposure to different erosion cycles was implemented to obtain the stress-strain properties. The results disclose that sulfate erosion imposes significant influence on both the nonlinear ascending and descending portions of the stress-strain properties of ECC. As the erosion period extended, ECC strength undergoes an obvious increase. And the descending section of the eroded ECC shows a significant stress drop, which is quite different from that before erosion. Additionally, a simple analytical model was proposed to provide satisfactory prediction of the stress-strain properties of ECC exposed to sulfate erosion.


2019 ◽  
Vol 20 (4) ◽  
pp. 1243-1253 ◽  
Author(s):  
Jan‐Paul Lanwer ◽  
Vincent Oettel ◽  
Martin Empelmann ◽  
Svenja Höper ◽  
Ursula Kowalsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document