scholarly journals Tree Species Richness and Neighborhood Effects on Ectomycorrhizal Fungal Richness and Community Structure in Boreal Forest

2021 ◽  
Vol 12 ◽  
Author(s):  
Eveli Otsing ◽  
Sten Anslan ◽  
Elia Ambrosio ◽  
Julia Koricheva ◽  
Leho Tedersoo

Tree species identity is one of the key factors driving ectomycorrhizal (EcM) fungal richness and community composition in boreal and temperate forest ecosystems, but little is known about the influence of tree species combinations and their neighborhood effects on EcM communities. To advance our understanding of host plant effects on EcM fungi, the roots of silver birch, Scots pine, and Norway spruce were analyzed using high-throughput sequencing across mature boreal forest exploratory plots of monocultures and two- and three-species mixtures in Finland. Our analyses revealed that tree species identity was an important determinant of EcM fungal community composition, but tree species richness had no significant influence on EcM fungal richness and community composition. We found that EcM fungal community composition associated with spruce depends on neighboring tree species. Our study suggests that at a regional-scale tree species identity is the primary factor determining community composition of root-associated EcM fungi alongside with tree species composition effects on EcM fungal community of spruce in mixed stands.

2016 ◽  
Vol 82 (9) ◽  
pp. 2632-2643 ◽  
Author(s):  
Hui Sun ◽  
Eeva Terhonen ◽  
Andriy Kovalchuk ◽  
Hanna Tuovila ◽  
Hongxin Chen ◽  
...  

ABSTRACTBoreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera ofAgaricomycotinaidentified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7631 ◽  
Author(s):  
Yong Li ◽  
Dashuan Tian ◽  
Jinsong Wang ◽  
Shuli Niu ◽  
Jing Tian ◽  
...  

Atmospheric nitrogen (N) deposition and phosphorus (P) addition both can change soil bacterial and fungal community structure with a consequent impact on ecosystem functions. However, which factor plays an important role in regulating responses of bacterial and fungal community to N and P enrichments remains unclear. We conducted a manipulative experiment to simulate N and P inputs (10 g N · m−2 · yr−1 NH4NO3 or 10 g P · m−2 · yr−1 NaH2PO4) and compared their effects on soil bacterial and fungal species richness and community composition. The results showed that the addition of N significantly increased NH4+ and Al3+ by 99.6% and 57.4%, respectively, and consequently led to a decline in soil pH from 4.18 to 3.75 after a 5-year treatment. P addition increased Al3+ and available P by 27.0% and 10-fold, respectively, but had no effect on soil pH. N addition significantly decreased bacterial species richness and Shannon index and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, Shannon index, and fungal community composition. A structural equation model showed that the shift in bacterial community composition was related to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results suggest that N and P additions affect soil bacterial and fungal communities in different ways in subtropical forest. These findings highlight how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.


2021 ◽  
Author(s):  
Markus S Germany ◽  
Helge Bruelheide ◽  
Alexandra Erfmeier

Abstract Aims Positive biodiversity ecosystem functioning relationships have been widely reported, predominately from grassland ecosystems. However, this does not necessarily have to apply accordingly in more complex situations such as in forests across different vertical strata. For instance, overstorey tree species richness has been shown to be associated with a lower understorey productivity. Whether or not tree species richness effects add to understorey productivity by increasing (i.e. due to habitat heterogeneity) or reducing resource availability (i.e. through increasing competition) and whether understorey productivity is indeed being governed more strongly by tree species identity are likely to change over time. Moreover, studies also suggested that richness-productivity relationships change with the environmental context. Using an experimental forest plantation with manipulated tree species richness, this study examined these temporal and environmental dynamics across strata. Methods In the context of the Biodiversity-Ecosystem Functioning project in subtropical China (BEF-China), we made use of understorey biomass samples repeatedly collected over a time period of three years along a tree species richness gradient. The effects of tree species richness, tree species identities and time were studied across different environmental treatments for their impact on understorey biomass. Important Findings While we found significant and consistent tree layer identity effects on understorey biomass, no such effect was encountered for tree species richness. Our results also indicate that among structural layers in forests, there might not be a single, generalizable overstorey species richness- understorey productivity relationship, and that the extent as to which overstorey-related environmental factors such as light transmittance contribute to understorey productivity change with time. Overall, we demonstrate that temporal dynamics should be considered when studying relationship among structural layers in forests.


2021 ◽  
Vol 2 ◽  
Author(s):  
Stefanie Hoeber ◽  
Christel Baum ◽  
Martin Weih ◽  
Stefano Manzoni ◽  
Petra Fransson

Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype (“Loden”) on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.


2021 ◽  
Author(s):  
Steve Kutos ◽  
Elle M. Barnes ◽  
Arnav Bhutada ◽  
JD Lewis

Soil fungi are vital to forest ecosystem functions, in part through their role mediating tree responses to environmental factors, as well as directly through effects on resource cycling. While the distribution of these key taxa may vary with a suite of abiotic and biotic factors, the relative role of host species identity on soil fungal community composition and function remains unresolved. In this study, we used a combination of amplicon sequencing and enzymatic assays to assess soil fungal composition and associated function under three tree species, Quercus rubra, Betula nigra, and Acer rubrum, planted individually and in all combinations in a greenhouse, with added fungal inoculum collected below mature field trees. Across treatments, fungal communities were dominated by the phylum Ascomycota, followed by Basidiomycota and Mortierellomycota. Nonetheless, fungal communities differed between each of the solo planted treatments, suggesting at least some taxa may associate preferentially with these tree species. Additionally, fungal community composition under mixed sapling treatments broadly differed from solo saplings. The data also suggests that there were larger enzymatic activities in the solo treatments as compared with all mixed treatments. This difference may be due to the greater relative abundance of saprobic taxa found in the solo treatments. This study provides evidence of the importance of tree identity on soil microbial communities and functional changes to forest soils.


2019 ◽  
Vol 29 (3) ◽  
pp. 799-815
Author(s):  
Victor P. Zwiener ◽  
André A. Padial ◽  
Márcia C. M. Marques

Sign in / Sign up

Export Citation Format

Share Document