scholarly journals Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg

2019 ◽  
Vol 13 ◽  
Author(s):  
Felix Ruppert ◽  
Alexander Badri-Spröwitz
Author(s):  
MARCO HUTTER ◽  
C. DAVID REMY ◽  
MARK A. HOEPFLINGER ◽  
ROLAND SIEGWART
Keyword(s):  

Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
Salvatore Benfratello ◽  
Luigi Palizzolo ◽  
Pietro Tabbuso ◽  
Santo Vazzano
Keyword(s):  

2021 ◽  
Author(s):  
Mujan Seif ◽  
Sean McDaniel ◽  
Matthew Beck ◽  
Alexandre Martin

2006 ◽  
Vol 91 (4) ◽  
pp. 568-578 ◽  
Author(s):  
G. D. Gatta ◽  
F. Nestola ◽  
T. B. Ballaran

Sign in / Sign up

Export Citation Format

Share Document