scholarly journals A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System

2021 ◽  
Vol 15 ◽  
Author(s):  
Fashu Xu ◽  
Jing Qiu ◽  
Wenbo Yuan ◽  
Hong Cheng

The lower limb exoskeleton is playing an increasing role in enabling individuals with spinal cord injury (SCI) to stand upright, walk, turn, and so on. Hence, it is essential to maintain the balance of the human-exoskeleton system during movements. However, the balance of the human-exoskeleton system is challenging to maintain. There are no effective balance control strategies because most of them can only be used in a specific movement like walking or standing. Hence, the primary aim of the current study is to propose a balance control strategy to improve the balance of the human-exoskeleton system in dynamic movements. This study proposes a new safety index named Enhanced Stability Pyramid Index (ESPI), and a new balance control strategy is based on the ESPI and the Dynamic Movement Primitives (DMPs). To incorporate dynamic information of the system, the ESPI employs eXtrapolated Center of Mass (XCoM) instead of the center of mass (CoM). Meanwhile, Time-to-Contact (TTC), the urgency of safety, is used as an automatic weight assignment factor of ESPI instead of the traditional manual one. Then, the balance control strategy utilizing DMPs to generate the gait trajectory according to the scalar and vector values of the ESPI is proposed. Finally, the walking simulation in Gazebo and the experiments of the human-exoskeleton system verify the effectiveness of the index and balance control strategy.

2016 ◽  
Vol 13 (03) ◽  
pp. 1550043 ◽  
Author(s):  
Jung-Yup Kim ◽  
Young-Seog Kim

This paper describes a novel zero moment point (ZMP) tracking control strategy using a disturbance observer (DOB) in the presence of ground slope change for balance control of an android robot. With regard to conventional ZMP controls, many researchers have studied ZMP tracking control strategies using an inverted pendulum model on flat level ground, and they have solved a slow response problem of nonminimum phase systems by using suitable feedforward motions called walking patterns. However, the conventional methods lead to ZMP offset errors in the presence of ground slope change; it is hence necessary to quickly eliminate the ZMP offset errors to realize robust balance control. In this paper, we rapidly eliminate the ZMP offset errors through a DOB using a model inversion for robust balance control in the presence of ground slope change. In particular, a dynamic model that uses the projected center of mass (CoM) position on the ground is additionally used as an output to solve a problem that generates an unstable pole during model inversion. Finally, the proposed control strategy is verified through MATLAB simulations and experiments using a real android leg.


2020 ◽  
Vol 53 (5) ◽  
pp. 265-270
Author(s):  
Xian Li ◽  
Chenguang Yang ◽  
Ying Feng

2021 ◽  
Author(s):  
Tiantian Wang ◽  
Liang Yan ◽  
Gang Wang ◽  
Xiaoshan Gao ◽  
Nannan Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document