scholarly journals Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

2014 ◽  
Vol 8 ◽  
Author(s):  
Miloslav Sedlacek ◽  
Stephan D. Brenowitz
1999 ◽  
Vol 82 (2) ◽  
pp. 1019-1032 ◽  
Author(s):  
William S. Rhode

The dorsal cochlear nucleus receives input from the auditory nerve and relays acoustic information to the inferior colliculus. Its principal cells receive two systems of inputs. One system through the molecular layer carries multimodal information that is processed through a neuronal circuit that resembles the cerebellum. A second system through the deep layer carries primary auditory nerve input, some of which is relayed through interneurons. The present study reveals the morphology of individual interneurons and their local axonal arbors and how these inhibitory interneurons respond to sound. Vertical cells lie beneath the fusiform cell layer. Their dendritic and axonal arbors are limited to an isofrequency lamina. They give rise to pericellular nests around the base of fusiform cells and their proximal basal dendrites. These cells exhibit an onset-graded response to short tones and have response features defined as type II. They have tuning curves that are closed contours (0 shaped), thresholds ∼27 dB SPL, spontaneous firing rates of ∼0 spikes/s, and they respond weakly or not at all to broadband noise, as described for type II units. Their responses are nonmonotonic functions of intensity with peak responses between 30 and 60 dB SPL. They also show a preference for the high-to-low direction of a frequency sweep. It has been suggested that these circuits may be involved in the processing of spectral cues for the localization of sound sources.


2007 ◽  
Vol 97 (4) ◽  
pp. 2863-2874 ◽  
Author(s):  
K. M. MacLeod ◽  
T. K. Horiuchi ◽  
C. E. Carr

The nature of the synaptic connection from the auditory nerve onto the cochlear nucleus neurons has a profound impact on how sound information is transmitted. Short-term synaptic plasticity, by dynamically modulating synaptic strength, filters information contained in the firing patterns. In the sound-localization circuits of the brain stem, the synapses of the timing pathway are characterized by strong short-term depression. We investigated the short-term synaptic plasticity of the inputs to the bird's cochlear nucleus angularis (NA), which encodes intensity information, by using chick embryonic brain slices and trains of electrical stimulation. These excitatory inputs expressed a mixture of short-term facilitation and depression, unlike those in the timing nuclei that only depressed. Facilitation and depression at NA synapses were balanced such that postsynaptic response amplitude was often maintained throughout the train at high firing rates (>100 Hz). The steady-state input rate relationship of the balanced synapses linearly conveyed rate information and therefore transmits intensity information encoded as a rate code in the nerve. A quantitative model of synaptic transmission could account for the plasticity by including facilitation of release (with a time constant of ∼40 ms), and a two-step recovery from depression (with one slow time constant of ∼8 s, and one fast time constant of ∼20 ms). A simulation using the model fit to NA synapses and auditory nerve spike trains from recordings in vivo confirmed that these synapses can convey intensity information contained in natural train inputs.


1994 ◽  
Vol 71 (3) ◽  
pp. 914-930 ◽  
Author(s):  
S. Zhang ◽  
D. Oertel

1. Intracellular recordings were made from 21 anatomically identified fusiform cells in the dorsal cochlear nucleus (DCN) of mice in slices. The aim of the experiments was to dissect the synaptic responses to shocks of the auditory nerve to correlate functional characteristics with the different classes of synaptic inputs. 2. When depolarized from rest (-57 +/- 5 mV) with current pulses, fusiform cells fired regular, overshooting action potentials that were followed by two undershoots. The frequency of firing increased with the strength of injected current by between 100 and 300 spikes/s/nA. The current-voltage relationship rectified between 10 and 15 mV below the resting potential. The slopes of current-voltage relationships of fusiform cells in the range between the resting potential and 10 mV hyperpolarization indicated an average input resistance of 86 +/- 37 M omega. 3. In each of the labeled fusiform cells frequent, spontaneous inhibitory postsynaptic potentials (IPSPs) were recorded singly or in bursts. Some, but not all, IPSPs were preceded by a slowly rising excitatory postsynaptic potential (EPSP). The temporal association of spontaneous EPSPs and IPSPs suggests that they are driven by a common source, possibly granule cells. 4. Shocks to the auditory nerve evoked synaptic responses consisting of early (1 to approximately 10 ms) and late (approximately 10 to 100 ms) components. 6,7-Dinitroquinoxaline-2,3-dione (DNQX) at 20 to 40 microM eliminated all detectable excitation and all late IPSPs. Late bursts of IPSPs, therefore, are mediated through a polysynaptic pathway that includes a DNQX-sensitive stage. Strong shocks to the nerve root elicited single monosynaptic IPSPs, indicating that inhibitory interneurons have processes close to the auditory nerve. Strychnine at 0.5 microM eliminated all detectable inhibition. 6. Cuts through the posteroventral cochlear nucleus (PVCN), which severed the descending branches of auditory nerve fibers, eliminated early EPSPs and IPSPs leaving late, slowly rising EPSPs and bursts of IPSPs in responses to shocks of the auditory nerve. Late, slowly rising EPSPs and bursts of IPSPs, as well as monosynaptic IPSPs, could also be evoked by stimulating the anteroventral cochlear nucleus (AVCN). 7. Focal applications of glutamate evoked excitation and inhibition from many parts of a slice, with patterns varying among cells, indicating that fusiform cells receive inputs through several groups of interneurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Danqing Yang ◽  
Guanxiao Qi ◽  
Dirk Feldmeyer

Neocortical layer 6 plays a crucial role in sensorimotor coordination and integration through functionally segregated circuits linking intracortical and subcortical areas. However, because of the high neuronal heterogeneity and sparse intralaminar connectivity data on the cell-type specific synaptic microcircuits in layer 6 remain few and far between. To address this issue, whole-cell recordings combined with morphological reconstructions have been used to identify morphoelectric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), corticocortical (CC) and cortico-claustral (CCla) pyramidal cells have been distinguished based on to their distinct dendritic and axonal morphologies as well as their different electrophysiological properties. Here we demonstrate that these three types of layer 6A pyramidal cells innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses to other L6A PCs; CC PCs form synapses of moderate efficacy; while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. Furthermore, for excitatory-inhibitory synaptic connections in layer 6 we were able to show that both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible of the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provides a basis for further investigations on the long-range cortico-cortical, cortico-thalamic and cortico-claustral pathways.


2002 ◽  
Vol 542 (1) ◽  
pp. 193-210 ◽  
Author(s):  
Attila Losonczy ◽  
Limei Zhang ◽  
Ryuichi Shigemoto ◽  
Peter Somogyi ◽  
Zoltan Nusser

1988 ◽  
Vol 8 (10) ◽  
pp. 4088-4097 ◽  
Author(s):  
R E Manrow ◽  
A Jacobson

We reevaluated the use of 32PO4 pulse-chases for analyzing mRNA decay rates in late-developing Dictyostelium cells. We found that completely effective PO4 chases could not be obtained in developing cells and that, as a consequence, the decay rates exhibited by some mRNAs were influenced by the rates at which they were transcribed. In developing cells disaggregated in the presence of cyclic AMP, the poly(A)+ mRNA population turned over with an apparent half-life of 4 h, individual mRNA decay rates were heterogeneous, and some prestalk and prespore mRNAs appeared to decay with biphasic kinetics. In cells disaggregated in the absence of cyclic AMP, all prestalk and prespore mRNAs decayed with biphasic kinetics. During the first 1 to 1.5 h after disaggregation in the absence of cyclic AMP, the cell-type-specific mRNAs were selectively degraded, decaying with half-lives of 20 to 30 min; thereafter, the residual prestalk and prespore mRNA molecules decayed at rates that were similar to those measured in the presence of cyclic AMP. This short-term labilization of cell-type-specific mRNAs was observed even for those species not requiring cyclic AMP for their accumulation in developing cells. The observation that cell-type specific mRNAs can decay at similar rates in disaggregated cells with or without cyclic AMP indicates that this compound does not act directly to stabilize prestalk and prespore mRNAs during development and that its primary role in the maintenance of cyclic-AMP-dependent mRNAs is likely to be transcriptional.


Sign in / Sign up

Export Citation Format

Share Document