scholarly journals Anterograde Tracing From the Göttingen Minipig Motor and Prefrontal Cortex Displays a Topographic Subthalamic and Striatal Axonal Termination Pattern Comparable to Previous Findings in Primates

2021 ◽  
Vol 15 ◽  
Author(s):  
Johannes Bech Steinmüller ◽  
Carsten Reidies Bjarkam ◽  
Dariusz Orlowski ◽  
Jens Christian Hedemann Sørensen ◽  
Andreas Nørgaard Glud

Background: Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) is a validated neurosurgical treatment of Parkinson’s Disease (PD). To investigate the mechanism of action, including potential DBS induced neuroplasticity, we have previously used a minipig model of Parkinson’s Disease, although the basal ganglia circuitry was not elucidated in detail.Aim: To describe the cortical projections from the primary motor cortex (M1) to the basal ganglia and confirm the presence of a cortico-striatal pathway and a hyperdirect pathway to the subthalamic nucleus, respectively, which is known to exist in primates.Materials and Methods: Five female Göttingen minipigs were injected into the primary motor cortex (n = 4) and adjacent prefrontal cortex (n = 1) with the anterograde neuronal tracer, Biotinylated Dextran Amine (BDA). 4 weeks later the animals were sacrificed and the brains cryosectioned into 30 μm thick coronal sections for subsequent microscopic analysis.Results: The hyperdirect axonal connections from the primary motor cortex were seen to terminate in the dorsolateral STN, whereas the axonal projections from the prefrontal cortex terminated medially in the STN. Furthermore, striatal tracing from the motor cortex was especially prominent in the dorsolateral putamen and less so in the dorsolateral caudate nucleus. The prefrontal efferents were concentrated mainly in the caudate nucleus and to a smaller degree in the juxtacapsular dorsal putamen, but they were also found in the nucleus accumbens and ventral prefrontal cortex.Discussion: The organization of the Göttingen minipig basal ganglia circuitry is in accordance with previous descriptions in primates. The existence of a cortico-striatal and hyperdirect basal ganglia pathway in this non-primate, large animal model may accordingly permit further translational studies on STN-DBS induced neuroplasticity of major relevance for future DBS treatments.

2013 ◽  
Vol 33 (17) ◽  
pp. 7220-7233 ◽  
Author(s):  
S. A. Shimamoto ◽  
E. S. Ryapolova-Webb ◽  
J. L. Ostrem ◽  
N. B. Galifianakis ◽  
K. J. Miller ◽  
...  

2018 ◽  
Author(s):  
João de Castro ◽  
Edrin Vicente ◽  
Birajara Machado ◽  
Bankim Chander ◽  
Rubens Cury ◽  
...  

2002 ◽  
Vol 22 (11) ◽  
pp. 4639-4653 ◽  
Author(s):  
Joshua A. Goldberg ◽  
Thomas Boraud ◽  
Sharon Maraton ◽  
Suzanne N. Haber ◽  
Eilon Vaadia ◽  
...  

2011 ◽  
Vol 227 (2) ◽  
pp. 296-301 ◽  
Author(s):  
A. Suppa ◽  
L. Marsili ◽  
D. Belvisi ◽  
A. Conte ◽  
E. Iezzi ◽  
...  

2008 ◽  
Vol 100 (5) ◽  
pp. 2515-2524 ◽  
Author(s):  
F. Steigerwald ◽  
M. Pötter ◽  
J. Herzog ◽  
M. Pinsker ◽  
F. Kopper ◽  
...  

We recorded resting-state neuronal activity from the human subthalamic nucleus (STN) during functional stereotactic surgeries. By inserting up to five parallel microelectrodes for single- or multiunit recordings and applying statistical spike-sorting methods, we were able to isolate a total of 351 single units in 65 patients with Parkinson's disease (PD) and 33 single units in 9 patients suffering from essential tremor (ET). Among these were 93 pairs of simultaneously recorded neurons in PD and 17 in ET, which were detected either by the same ( n = 30) or neighboring microelectrodes ( n = 80). Essential tremor is a movement disorder without any known basal ganglia pathology and with normal dopaminergic brain function. By comparing the neuronal activity of the STN in patients suffering from PD and ET we intended to characterize, for the first time, changes of basal ganglia activity in the human disease state that had previously been described in animal models of Parkinson's disease. We found a significant increase in the mean firing rate of STN neurons in PD and a relatively larger fraction of neurons exhibiting burstlike activity compared with ET. The overall proportion of neurons exhibiting intrinsic oscillations or interneuronal synchronization as defined by significant spectral peaks in the auto- or cross-correlations functions did not differ between PD and ET when considering the entire frequency range of 1–100 Hz. The distribution of significant oscillations across the theta (1–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and gamma band (>35 Hz), however, was uneven in ET and PD, as indicated by a trend in Fisher's exact test ( P = 0.05). Oscillations and pairwise synchronizations within the 12- to 35-Hz band were a unique feature of PD. Our results confirm the predictions of the rate model of Parkinson's disease. In addition, they emphasize abnormalities in the patterning and dynamics of neuronal discharges in the parkinsonian STN, which support current concepts of abnormal motor loop oscillations in Parkinson's disease.


Brain ◽  
2012 ◽  
Vol 135 (7) ◽  
pp. 2074-2088 ◽  
Author(s):  
A. Kishore ◽  
T. Popa ◽  
B. Velayudhan ◽  
T. Joseph ◽  
A. Balachandran ◽  
...  

2021 ◽  
Vol 429 ◽  
pp. 119453
Author(s):  
Valentina D'Onofrio ◽  
Andrea Guerra ◽  
Francesco Asci ◽  
Giovanni Fabbrini ◽  
Alfredo Berardelli ◽  
...  

2020 ◽  
Vol 40 (24) ◽  
pp. 4788-4796 ◽  
Author(s):  
Andrea Guerra ◽  
Francesco Asci ◽  
Valentina D'Onofrio ◽  
Valerio Sveva ◽  
Matteo Bologna ◽  
...  

2017 ◽  
Vol 10 (4) ◽  
pp. 806-816 ◽  
Author(s):  
A. Suppa ◽  
C. Leone ◽  
F. Di Stasio ◽  
L. Marsili ◽  
A. Di Santo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document