scholarly journals Value of Dual-Energy Dual-Layer CT After Mechanical Recanalization for the Quantification of Ischemic Brain Edema

2021 ◽  
Vol 12 ◽  
Author(s):  
Paul Steffen ◽  
Friederike Austein ◽  
Thomas Lindner ◽  
Lukas Meyer ◽  
Matthias Bechstein ◽  
...  

Background and Purpose: Ischemic brain edema can be measured in computed tomography (CT) using quantitative net water uptake (NWU), a recently established imaging biomarker. NWU determined in follow-up CT after mechanical thrombectomy (MT) has shown to be a strong predictor of functional outcome. However, disruption of the blood–brain barrier after MT may also lead to contrast staining, increasing the density on CT scans, and hence, directly impairing measurements of NWU. The purpose of this study was to determine whether dual-energy dual-layer CT (DDCT) after MT can improve the quantification of NWU by measuring NWU in conventional polychromatic CT images (CP-I) and virtual non-contrast images (VNC-I). We hypothesized that VNC-based NWU (vNWU) differs from NWU in conventional CT (cNWU).Methods: Ten patients with middle cerebral artery occlusion who received a DDCT follow-up scan after MT were included. NWU was quantified in conventional and VNC images as previously published and was compared using paired sample t-tests.Results: The mean cNWU was 3.3% (95%CI: 0–0.41%), and vNWU was 11% (95%CI: 1.3–23.4), which was not statistically different (p = 0.09). Two patients showed significant differences between cNWU and vNWU (Δ = 24% and Δ = 36%), while the agreement of cNWU/vNWU in 8/10 patients was high (difference 2.3%, p = 0.23).Conclusion: NWU may be quantified precisely on conventional CT images, as the underestimation of ischemic edema due to contrast staining was low. However, a proportion of patients after MT might show significant contrast leakage resulting in edema underestimation. Further research is needed to validate these findings and investigate clinical implications.

2019 ◽  
Vol 40 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Gabriel Broocks ◽  
Fabian Flottmann ◽  
Uta Hanning ◽  
Gerhard Schön ◽  
Peter Sporns ◽  
...  

Studies evaluating the effect of reperfusion on ischemic edema in acute stroke described conflicting results. Net water uptake (NWU) per brain volume is a new quantitative imaging biomarker of space-occupying ischemic edema, which can be measured in computed tomography (CT). We sought to investigate the effects of vessel recanalization on the formation of ischemic brain edema using quantitative NWU. In this multicenter observational study, acute ischemic stroke patients with a large vessel occlusion (LVO) in the anterior circulation were consecutively screened. Patients with vessel recanalization (thrombolysis in cerebral infarction (TICI) 2 b or 3) versus persistent vessel occlusion (no thrombectomy, TICI 0-1) were compared. Lesion-NWU was quantified in multimodal admission CT and follow-up CT (FCT), and ΔNWU was calculated as difference. Of 194 included patients, 150 had successful endovascular recanalization and 44 persistent LVO. In FCT after treatment, the mean (standard deviation) ΔNWU was 15.8% (5.7) in patients with persistent LVO and 9.8% (5.8) with vessel recanalization ( p < 0.001). In multivariate regression analysis, vessel recanalization was independently associated with a lowered ΔNWU by 6.3% compared to LVO (95% confidence interval: 3.7–9.0, p < 0.001). Successful vessel recanalization was associated with a significantly reduced formation of ischemic brain edema. Quantitative NWU may be used to compare the treatment effects in acute stroke.


Stroke ◽  
1986 ◽  
Vol 17 (6) ◽  
pp. 1149-1152 ◽  
Author(s):  
Y Horikawa ◽  
S Naruse ◽  
C Tanaka ◽  
K Hirakawa ◽  
H Nishikawa

Stroke ◽  
1980 ◽  
Vol 11 (6) ◽  
pp. 593-601 ◽  
Author(s):  
F J Schuier ◽  
K A Hossmann

Stroke ◽  
1987 ◽  
Vol 18 (1) ◽  
pp. 150-157 ◽  
Author(s):  
W D Lo ◽  
A L Betz ◽  
G P Schielke ◽  
J T Hoff

2014 ◽  
Vol 127 ◽  
pp. 5-9 ◽  
Author(s):  
Wen-Wen Wang ◽  
Cheng-long Xie ◽  
Li-Li Zhou ◽  
Guo-Sheng Wang

2009 ◽  
Vol 30 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Jae Hwan Kim ◽  
Yong Woo Lee ◽  
Kyung Ah Park ◽  
Won Taek Lee ◽  
Jong Eun Lee

Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of L-arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document