scholarly journals High Amplitude EEG Motor Potential during Repetitive Foot Movement: Possible Use and Challenges for Futuristic BCIs That Restore Mobility after Spinal Cord Injury

2017 ◽  
Vol 11 ◽  
Author(s):  
Aljoscha Thomschewski ◽  
Yvonne Höller ◽  
Peter Höller ◽  
Stefan Leis ◽  
Eugen Trinka
Author(s):  
Christopher L. Hughes ◽  
Sharlene N. Flesher ◽  
Jeffrey M. Weiss ◽  
John E. Downey ◽  
Jennifer L. Collinger ◽  
...  

AbstractObjectiveIntracortical microstimulation (ICMS) in somatosensory cortex can restore sensation to people who have lost it due to spinal cord injury or other conditions. One potential challenge for chronic ICMS is whether neural recording and stimulation can remain stable over many years. This is particularly relevant since the recording quality of implanted microelectrode arrays frequently experience degradation over time and stimulation safety has been considered a potential barrier to the clinical use of ICMS. Our objective is to evaluate stability of recordings on intracortical stimulated and non-stimulated electrodes in a human participant across a long period of implantation. Additionally, we would like to assess the ability to evoke sensations with ICMS over time.ApproachIn a study investigating intracortical implants for a bidirectional brain-computer interface, we implanted microelectrode arrays with sputtered iridium oxide tips in the somatosensory cortex of a human participant with a cervical spinal cord injury. We regularly stimulated through electrodes on these microelectrode arrays to evoke tactile sensations on the hand. Here, we quantify the stability of these electrodes in comparison to non-stimulated electrodes implanted in motor cortex over 1500 days in two ways: recorded signal quality and electrode impedances. Additionally, we quantify the perceptual stability of ICMS-evoked sensations with detection thresholds.Main resultsWe found that recording quality, as assessed by the number of electrodes with high-amplitude waveform recordings (> 100 µV), peak-to-peak voltage, noise, and signal-to-noise ratio, generally decreased over time on stimulated and non-stimulated electrodes. However, stimulated electrodes were much more likely to continue to record high-amplitude signals than non-stimulated electrodes. Interestingly, the detection thresholds for stimulus-evoked tactile sensations decreased over time from a median of 31.5 μA at Day 100 to 10.4 μA at Day 1500, with the most substantial changes occurring between Day 100 and Day 500.SignificanceThese results provide evidence that ICMS in human somatosensory cortex can be provided over long periods of time without deleterious effects on recording or stimulation capabilities. In fact, psychophysical sensitivity to stimulation improves over time and stimulation itself may promote more robust long-term neural recordings.


Sign in / Sign up

Export Citation Format

Share Document