scholarly journals A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes

2018 ◽  
Vol 12 ◽  
Author(s):  
Hailong Li ◽  
Nehal A. Parikh ◽  
Lili He
Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

2021 ◽  
Author(s):  
Luke Gundry ◽  
Gareth Kennedy ◽  
Alan Bond ◽  
Jie Zhang

The use of Deep Neural Networks (DNNs) for the classification of electrochemical mechanisms based on training with simulations of the initial cycle of potential have been reported. In this paper,...


2021 ◽  
Author(s):  
Sinam Ajitkumar Singh ◽  
Takhellambam Gautam Meitei ◽  
Ningthoujam Dinita Devi ◽  
Swanirbhar Majumder

Abstract Brain-computer interfaces ( BCIs ) acquire electroencephalogram (EEG) signals and interpret them into a command that helps people with severe motor disabilities using single channel. The goal of BCI is to achieve a prototype that supports disabled people to develop the relevant function. Various studies have been implemented in the literature to achieve a superior design. The main novelty of the proposed P300 detection-based BCI model is associated with the usage of a single-channel. In this work, we introduced a denoising approach using the bandpass filter technique followed by the transformation of scalogram images using continuous wavelet transform. The derived images were trained and validated using a deep neural network based on the transfer learning approach. This paper presents a BCI model based on the deep network that delivers higher performance in terms of classification accuracy and bitrate for disabled subjects using a single-channel EEG signal. The proposed P300 based BCI model has the highest average information transfer rates of 13.23 to 26.48 bits/min for disabled subjects. The classification performance has shown that the deep network based on the transfer learning approach can offer comparable performance with other state-of-the-art-method. This article does not contain any studies with human participants performed by any of the authors. However, the data was collected by EPFL which is available open for the researchers to work upon.


Author(s):  
Sagar Kora Venu

Data sets for medical images are generally imbalanced and limited in sample size because of high data collection costs, time-consuming annotations, and patient privacy concerns. The training of deep neural network classification models on these data sets to improve the generalization ability does not produce the desired results for classifying the medical condition accurately and often overfit the data on the majority of class samples. To address the issue, we propose a framework for improving the classification performance metrics of deep neural network classification models using transfer learning: pre-trained models, such as Xception, InceptionResNet, DenseNet along with the Generative Adversarial Network (GAN) – based data augmentation. Then, we trained the network by combining traditional data augmentation techniques, such as randomly flipping the image left to right and GAN-based data augmentation, and then fine-tuned the hyper-parameters of the transfer learning models, such as the learning rate, batch size, and the number of epochs. With these configurations, the Xception model outperformed all other pre-trained models achieving a test accuracy of 98.7%, the precision of 99%, recall of 99.3%, f1-score of 99.1%, receiver operating characteristic (ROC) - area under the curve (AUC) of 98.2%.


Sign in / Sign up

Export Citation Format

Share Document