scholarly journals Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion

2021 ◽  
Vol 15 ◽  
Author(s):  
Junfan Fang ◽  
Sisi Wang ◽  
Jie Zhou ◽  
Xiaomei Shao ◽  
Haiju Sun ◽  
...  

Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 775
Author(s):  
Xingjuan Chen ◽  
Yaqian Duan ◽  
Ashley Riley ◽  
Megan Welch ◽  
Fletcher White ◽  
...  

Individuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.


Pain ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 882-889 ◽  
Author(s):  
Tomomi Hara ◽  
Terumasa Chiba ◽  
Kenji Abe ◽  
Akiko Makabe ◽  
Souichi Ikeno ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Anhui Wang ◽  
Xiangchao Shi ◽  
Ruoyang Yu ◽  
Bao Qiao ◽  
Runan Yang ◽  
...  

The purinergic 2X7 (P2X7) receptor expressed in satellite glial cells (SGCs) is involved in the inflammatory response, and transient receptor potential vanilloid 1 (TRPV1) participates in the process of neurogenic inflammation, such as that in diabetic neuropathic pain (DNP) and peripheral neuralgia. The main purpose of this study was to explore the role of the P2X7 receptor in DNP hypersensitivity mediated by TRPV1 in the rat and its possible mechanism. A rat model of type 2 diabetes mellitus-related neuropathic pain (NPP) named the DNP rat model was established in this study. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of DNP rats were increased after intrathecal injection of the P2X7 receptor antagonist A438079, and the mRNA and protein levels of TRPV1 in the dorsal root ganglion (DRG) were decreased in DNP rats treated with A438079 compared to untreated DNP rats; in addition, A438079 also decreased the phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) in the DNP group. Based on these results, the P2X7 receptor might be involved in DNP mediated by TRPV1.


2010 ◽  
Vol 113 (4) ◽  
pp. 833-844 ◽  
Author(s):  
Peter J. Wickley ◽  
Ryo Yuge ◽  
Mary S. Russell ◽  
Hongyu Zhang ◽  
Michael A. Sulak ◽  
...  

Background The activity of transient receptor potential vanilloid subtype-1 (TRPV1) receptors, key nociceptive transducers in dorsal root ganglion sensory neurons, is enhanced by protein kinase C epsilon (PKCepsilon) activation. The intravenous anesthetic propofol has been shown to activate PKCepsilon. Our objectives were to examine whether propofol modulates TRPV1 function in dorsal root ganglion neurons via activation of PKCepsilon. Methods Lumbar dorsal root ganglion neurons from wild-type and PKC& epsilon;-null mice were isolated and cultured for 24 h. Intracellular free Ca concentration was measured in neurons by using fura-2 acetoxymethyl ester. The duration of pain-associated behaviors was also assessed. Phosphorylation of PKCepsilon and TRPV1 and the cellular translocation of PKCepsilon from cytosol to membrane compartments were assessed by immunoblot analysis. Results In wild-type neurons, repeated stimulation with capsaicin (100 nm) progressively decreased the transient rise in intracellular free Ca concentration. After desensitization, exposure to propofol rescued the Ca response. The resensitizing effect of propofol was absent in neurons obtained from PKCepsilon-null mice. Moreover, the capsaicin-induced desensitization of TRPV1 was markedly attenuated in the presence of propofol in neurons from wild-type mice but not in neurons from PKCepsilon-null mice. Propofol also prolonged the duration of agonist-induced pain associated behaviors in wild-type mice. In addition, propofol increased phosphorylation of PKCepsilon as well as TRPV1 and stimulated translocation of PKCepsilon from cytosolic to membrane fraction. Discussion Our results indicate that propofol modulates TRPV1 sensitivity to capsaicin and that this most likely occurs through a PKCepsilon-mediated phosphorylation of TRPV1.


Sign in / Sign up

Export Citation Format

Share Document