scholarly journals F-Value Time-Frequency Analysis: Between-Within Variance Analysis

2021 ◽  
Vol 15 ◽  
Author(s):  
Hong Gi Yeom ◽  
Hyundoo Jeong

Studies on brain mechanisms enable us to treat various brain diseases and develop diverse technologies for daily life. Therefore, an analysis method of neural signals is critical, as it provides the basis for many brain studies. In many cases, researchers want to understand how neural signals change according to different conditions. However, it is challenging to find distinguishing characteristics, and doing so requires complex statistical analysis. In this study, we propose a novel analysis method, FTF (F-value time-frequency) analysis, that applies the F-value of ANOVA to time-frequency analysis. The proposed method shows the statistical differences among conditions in time and frequency. To evaluate the proposed method, electroencephalography (EEG) signals were analyzed using the proposed FTF method. The EEG signals were measured during imagined movement of the left hand, right hand, foot, and tongue. The analysis revealed the important characteristics which were different among different conditions and similar within the same condition. The FTF analysis method will be useful in various fields, as it allows researchers to analyze how frequency characteristics vary according to different conditions.

2004 ◽  
Vol 52 (6) ◽  
pp. 1585-1595 ◽  
Author(s):  
M. Karimi-Ghartemani ◽  
A.K. Ziarani

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4457 ◽  
Author(s):  
She ◽  
Zhu ◽  
Tian ◽  
Wang ◽  
Yokoi ◽  
...  

Feature extraction, as an important method for extracting useful information from surfaceelectromyography (SEMG), can significantly improve pattern recognition accuracy. Time andfrequency analysis methods have been widely used for feature extraction, but these methods analyzeSEMG signals only from the time or frequency domain. Recent studies have shown that featureextraction based on time-frequency analysis methods can extract more useful information fromSEMG signals. This paper proposes a novel time-frequency analysis method based on the Stockwelltransform (S-transform) to improve hand movement recognition accuracy from forearm SEMGsignals. First, the time-frequency analysis method, S-transform, is used for extracting a feature vectorfrom forearm SEMG signals. Second, to reduce the amount of calculations and improve the runningspeed of the classifier, principal component analysis (PCA) is used for dimensionality reduction of thefeature vector. Finally, an artificial neural network (ANN)-based multilayer perceptron (MLP) is usedfor recognizing hand movements. Experimental results show that the proposed feature extractionbased on the S-transform analysis method can improve the class separability and hand movementrecognition accuracy compared with wavelet transform and power spectral density methods.


Sign in / Sign up

Export Citation Format

Share Document