scholarly journals Presence of Inhibitory Glycinergic Transmission in Medium Spiny Neurons in the Nucleus Accumbens

Author(s):  
Braulio Muñoz ◽  
Gonzalo E. Yevenes ◽  
Benjamin Förstera ◽  
David M. Lovinger ◽  
Luis G. Aguayo
2017 ◽  
Vol 114 (19) ◽  
pp. 5029-5034 ◽  
Author(s):  
Grietje Krabbe ◽  
S. Sakura Minami ◽  
Jon I. Etchegaray ◽  
Praveen Taneja ◽  
Biljana Djukic ◽  
...  

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin (GRN) gene accounts for 10% of all cases of familial FTD. GRN mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α. We examined behavioral alterations related to obsessive–compulsive disorder (OCD) and the role of TNFα and related signaling pathways in FTD patients with GRN mutations and in mice lacking progranulin (PGRN). We found that patients and mice with GRN mutations displayed OCD and self-grooming (an OCD-like behavior in mice), respectively. Furthermore, medium spiny neurons in the nucleus accumbens, an area implicated in development of OCD, display hyperexcitability in PGRN knockout mice. Reducing levels of TNFα in PGRN knockout mice abolished excessive self-grooming and the associated hyperexcitability of medium spiny neurons of the nucleus accumbens. In the brain, PGRN is highly expressed in microglia, which are a major source of TNFα. We therefore deleted PGRN specifically in microglia and found that it was sufficient to induce excessive grooming. Importantly, excessive grooming in these mice was prevented by inactivating nuclear factor κB (NF-κB) in microglia/myeloid cells. Our findings suggest that PGRN deficiency leads to excessive NF-κB activation in microglia and elevated TNFα signaling, which in turn lead to hyperexcitability of medium spiny neurons and OCD-like behavior.


2020 ◽  
Vol 87 (11) ◽  
pp. 992-1000 ◽  
Author(s):  
Michel Engeln ◽  
Swarup Mitra ◽  
Ramesh Chandra ◽  
Utsav Gyawali ◽  
Megan E. Fox ◽  
...  

2017 ◽  
Vol 116 ◽  
pp. 224-232 ◽  
Author(s):  
Craig T. Werner ◽  
Conor H. Murray ◽  
Jeremy M. Reimers ◽  
Niravkumar M. Chauhan ◽  
Kenneth K.Y. Woo ◽  
...  

2006 ◽  
Vol 96 (4) ◽  
pp. 2034-2041 ◽  
Author(s):  
Mischa de Rover ◽  
Johannes C. Lodder ◽  
Marten P. Smidt ◽  
Arjen B. Brussaard

We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hope Kronman ◽  
Felix Richter ◽  
Benoit Labonté ◽  
Ramesh Chandra ◽  
Shan Zhao ◽  
...  

2005 ◽  
Vol 385 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Craig G. McDonald ◽  
Vernon K. Dailey ◽  
Hadley C. Bergstrom ◽  
Tracey L. Wheeler ◽  
Amy K. Eppolito ◽  
...  

2015 ◽  
Vol 357 ◽  
pp. e266
Author(s):  
Y. Funamizu ◽  
H. Nishijima ◽  
T. Ueno ◽  
S. Ueno ◽  
S. Yagihashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document