scholarly journals Prediction of EGFR Mutation Status Based on 18F-FDG PET/CT Imaging Using Deep Learning-Based Model in Lung Adenocarcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Guotao Yin ◽  
Ziyang Wang ◽  
Yingchao Song ◽  
Xiaofeng Li ◽  
Yiwen Chen ◽  
...  

ObjectiveThe purpose of this study was to develop a deep learning-based system to automatically predict epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma in 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT).MethodsThree hundred and one lung adenocarcinoma patients with EGFR mutation status were enrolled in this study. Two deep learning models (SECT and SEPET) were developed with Squeeze-and-Excitation Residual Network (SE-ResNet) module for the prediction of EGFR mutation with CT and PET images, respectively. The deep learning models were trained with a training data set of 198 patients and tested with a testing data set of 103 patients. Stacked generalization was used to integrate the results of SECT and SEPET.ResultsThe AUCs of the SECT and SEPET were 0.72 (95% CI, 0.62–0.80) and 0.74 (95% CI, 0.65–0.82) in the testing data set, respectively. After integrating SECT and SEPET with stacked generalization, the AUC was further improved to 0.84 (95% CI, 0.75–0.90), significantly higher than SECT (p<0.05).ConclusionThe stacking model based on 18F-FDG PET/CT images is capable to predict EGFR mutation status of patients with lung adenocarcinoma automatically and non-invasively. The proposed model in this study showed the potential to help clinicians identify suitable advanced patients with lung adenocarcinoma for EGFR‐targeted therapy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Guotao Yin ◽  
Ziyang Wang ◽  
Yingchao Song ◽  
Xiaofeng Li ◽  
Yiwen Chen ◽  
...  

2018 ◽  
Vol 210 (6) ◽  
pp. 1346-1351 ◽  
Author(s):  
Yong-il Kim ◽  
Jin Chul Paeng ◽  
Young Sik Park ◽  
Gi Jeong Cheon ◽  
Dong Soo Lee ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Min Zhang ◽  
Yiming Bao ◽  
Weiwei Rui ◽  
Chengfang Shangguan ◽  
Jiajun Liu ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 549-562 ◽  
Author(s):  
Qiufang Liu ◽  
Dazhen Sun ◽  
Nan Li ◽  
Jinman Kim ◽  
Dagan Feng ◽  
...  

2019 ◽  
Vol 47 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
Jianyuan Zhang ◽  
Xinming Zhao ◽  
Yan Zhao ◽  
Jingmian Zhang ◽  
Zhaoqi Zhang ◽  
...  

Author(s):  
Rui Guo ◽  
Xiaobin Hu ◽  
Haoming Song ◽  
Pengpeng Xu ◽  
Haoping Xu ◽  
...  

Abstract Purpose To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment 18F-FDG PET/CT results. Methods One hundred and sixty-seven patients with ENKTL who underwent pretreatment 18F-FDG PET/CT were retrospectively collected. Eighty-four patients were followed up for at least 2 years (training set = 64, test set = 20). A WSDL method was developed to enable the integration of the remaining 83 patients with incomplete/missing follow-up information in the training set. To test generalization, these data were derived from three types of scanners. Prediction similarity index (PSI) was derived from deep learning features of images. Its discriminative ability was calculated and compared with that of a conventional deep learning (CDL) method. Univariate and multivariate analyses helped explore the significance of PSI and clinical features. Results PSI achieved area under the curve scores of 0.9858 and 0.9946 (training set) and 0.8750 and 0.7344 (test set) in the prediction of progression-free survival (PFS) with the WSDL and CDL methods, respectively. PSI threshold of 1.0 could significantly differentiate the prognosis. In the test set, WSDL and CDL achieved prediction sensitivity, specificity, and accuracy of 87.50% and 62.50%, 83.33% and 83.33%, and 85.00% and 75.00%, respectively. Multivariate analysis confirmed PSI to be an independent significant predictor of PFS in both the methods. Conclusion The WSDL-based framework was more effective for extracting 18F-FDG PET/CT features and predicting the prognosis of ENKTL than the CDL method.


Sign in / Sign up

Export Citation Format

Share Document