scholarly journals Muscle Activation During ACL Injury Risk Movements in Young Female Athletes: A Narrative Review

2018 ◽  
Vol 9 ◽  
Author(s):  
Jesper Bencke ◽  
Per Aagaard ◽  
Mette K. Zebis
2019 ◽  
Vol 41 (02) ◽  
pp. 113-118
Author(s):  
Gabrielle Gilmer ◽  
Gretchen D. Oliver

AbstractRecently, an emphasis has been placed on understanding how ovarian sex hormones and hormonal contraceptives affect risk for anterior cruciate ligament (ACL) injury. The literature presents large discrepancies in whether or not hormonal contraceptives affect ACL injury risk; therefore, the purpose of this study was to evaluate whether vertical ground reaction force (GRF) and knee valgus force are different between athletes who do and do not use hormonal contraceptives. Twenty-two female athletes volunteered to participate and were divided into two groups based on their answers to a health history questionnaire: those who use hormonal contraceptives and those who do not. Participants performed a drop vertical jump (DVJ) and single leg crossover dropdown (SCD) at two different time points in their menstrual cycle (pre-ovulatory phase and mid-luteal phase). Kinetic data were collected at 1000 Hz. Independent samples t-tests revealed no significant differences between groups in vertical GRF and knee valgus force at both time points. Findings from this study suggest that hormonal contraceptives do not elicit detectable changes in vertical GRF and knee valgus force. Ultimately, this calls for further studies on the relationship between hormones and ACL injury risk and physicians to consider hormonal screening in addition to neuromuscular and biomechanical screening.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S287 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0012
Author(s):  
Sean Higinbotham ◽  
Ryan S. Wexler ◽  
Danny Blake ◽  
Carlie Harrison ◽  
Justin Hollenbeck ◽  
...  

Background: Scientific studies have shown female soccer athletes to be 3 times more likely to injure their anterior cruciate ligament (ACL) than their male counterparts and the majority of these injuries are from a non-contact mechanism. The biomechanical factors of this phenomenon have been extensively studied in a laboratory-based setting, but there has been little progress in reducing the incidence of ACL injury in young female athletes. It is plausible, therefore, to suggest that the biomechanical improvements noted in a laboratory-based setting do not directly translate to a field-based setting. Preventive neuromuscular training programs are typically field-based and have been shown to be an effective intervention for reducing ACL injury risk by improving dynamic, frontal-plane knee stability. However, these programs are time consuming and prone to compliance and implementation issues. For these reasons, researchers have attempted to identify the minimum viable training program or wearable device that can be studied in the field using video cameras to determine their influence on movement-related risk factors for ACL injury. Purpose: The aim of this study was to evaluate the effectiveness of a wearable neuromuscular device (WND) with or without the addition of a field-based, preventive neuromuscular training program on jump-landing risk assessment in young female soccer athletes. Methods: Thirty-nine female soccer players (161.0 +/- 6.6 cm; 49.4 kg +/- 5.9; 13.3 +/- 0.5 y) from two different teams in a local soccer club volunteered to participate in this study. Team 1 (n = 25) performed a 6-week, field-based NMT program while wearing a WND. The NMT was instructed by a trained exercise specialist. The NMT program was divided into three, two-week blocks of progressively increasing levels of exercise complexity and intensity focused on improving the strength and activation behavior of the trunk, hip and thigh muscles. Field-based movement testing was performed in the first week before training began (pre-test) and in the seventh week upon completion of the NMT program (post-test). During testing video cameras recorded a jump-landing task in the frontal and sagittal planes. The Landing Error Scoring System (LESS) and a novel version of the LESS (LESS-RMC) was used to asses movement quality related to ACL injury risk. Team 2 (n=14) wore the WND for an equal amount of athletic exposures over 7 weeks but did not perform the NMT program. Four different raters were recruited to visually score all jump landing trials using the two different rating protocols during the pre-test and post-test. For each visual assessment (LESS & LESS-RMC) a repeated measures ANOVA was conducted to explore within group (test) and between group (team) differences. Results: Repeated measure ANOVA results for the LESS score scale indicated a significant within factor difference in pretest and post test scores F(7.398, 27.533) = 8.598, P < 0.05. Pretest scores for team 1 (6.18 +/- 1.68) and team 2 (6.95 +/- 0.94) both saw a significant reduction in ACL risk scores to 5.44 +/- 1.70 and 6.31 +/- 1.75, respectively. ANOVA results for the LESS-RMC scale also indicated a significant within factor difference in pretest and posttests F(6.756, 35.624) = 6.069, p < 0.05. Pretest scores for Team 1 (6.02 +/- 1.99) and Team 2 (6.49 +/- 1.33) both saw a significant reduction in ACL risk scores to 5.10 +/- 1.77 and 6.09 +/- 1.50, respectively. ANOVA results revealed no significant differences between team scores for the LESS (F(0.031,27.533) = 0.036, p > 0.05) or LESS-RMC (F(1.053,35.624) = .946, p > 0.05) scales. Conclusion: The results reveal that the NMT program utilized in this study had no statistically significant additive effect on the visual risk assessment scores for Team 1 compared to Team 2, who had no NMT intervention and only wore the WND. Collectively, these results suggest that simply wearing a WND during 6 weeks of practice may be a less evasive and cheaper alternative to a NMT program.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S287 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

2018 ◽  
Vol 27 (5) ◽  
pp. 438-444
Author(s):  
Lukas D. Linde ◽  
Jessica Archibald ◽  
Eve C. Lampert ◽  
John Z. Srbely

Context: Females suffer 4 to 6 times more noncontact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. Objective: To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Design: Interventional study setting: movement and posture laboratory. Participants: A total of 13 healthy females (21.3 [0.88] y, 1.68 [0.07] m, and 58.27 [5.46] kg). Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, and control), confirmed using surface electromyography. Main Outcome Measures: Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. Results: No differences were observed for peak lateral trunk displacement, peak hip adduction angle, or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in 4 of 6 muscles recorded. Conclusion: The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.


2016 ◽  
Vol 48 (1) ◽  
pp. 107-113 ◽  
Author(s):  
EVANGELOS PAPPAS ◽  
MARIYA P. SHIYKO ◽  
KEVIN R. FORD ◽  
GREGORY D. MYER ◽  
TIMOTHY E. HEWETT

2017 ◽  
Vol 45 (3) ◽  
pp. NP5-NP6 ◽  
Author(s):  
Mari Leppänen ◽  
Kati Pasanen ◽  
Urho M. Kujala ◽  
Tommi Vasankari ◽  
Pekka Kannus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document