scholarly journals Orderliness of Visual Stimulus Motion Mediates Sensorimotor Coordination

2018 ◽  
Vol 9 ◽  
Author(s):  
Joshua Haworth ◽  
Nicholas Stergiou
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aurel Vasile Martiniuc ◽  
Alois Knoll

The information regarding visual stimulus is encoded in spike trains at the output of retina by retinal ganglion cells (RGCs). Among these, the directional selective cells (DSRGC) are signaling the direction of stimulus motion. DSRGCs' spike trains show accentuated periods of short interspike intervals (ISIs) framed by periods of isolated spikes. Here we use two types of visual stimulus, white noise and drifting bars, and show that short ISI spikes of DSRGCs spike trains are more often correlated to their preferred stimulus feature (that is, the direction of stimulus motion) and carry more information than longer ISI spikes. Firstly, our results show that correlation between stimulus and recorded neuronal response is best at short ISI spiking activity and decrease as ISI becomes larger. We then used grating bars stimulus and found that as ISI becomes shorter the directional selectivity is better and information rates are higher. Interestingly, for the less encountered type of DSRGC, known as ON-DSRGC, short ISI distribution and information rates revealed consistent differences when compared with the other directional selective cell type, the ON-OFF DSRGC. However, these findings suggest that ISI-based temporal filtering integrates a mechanism for visual information processing at the output of retina toward higher stages within early visual system.


1996 ◽  
Vol 76 (6) ◽  
pp. 3617-3632 ◽  
Author(s):  
A. Z. Zivotofsky ◽  
K. G. Rottach ◽  
L. Averbuch-Heller ◽  
A. A. Kori ◽  
C. W. Thomas ◽  
...  

1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the “memory period” (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the “spatial error” than with the “retinal error” this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ


Perception ◽  
2019 ◽  
Vol 48 (5) ◽  
pp. 386-401 ◽  
Author(s):  
Shinji Nakamura

When an observer sees a uniformly moving visual stimulus, he or she typically perceives an illusory motion of his or her body in the opposite direction (vection). In this study, the effects of the visual inducer’s perceived rigidity were examined using a horizontal sine wave-like line stimulus moving horizontally. Lowering the sine wave amplitude resulted in the perception of a less rigid visual stimulus motion, although the stimulus was always set to move completely rigidly. The psychophysical experiment revealed that visual self-motion perception was weaker in the lower amplitude condition where the visual stimulus was perceived as less rigid. The follow-up experiments showed that the effects of sine wave amplitude manipulation were unrelated to the modulation of the perceived speed. Furthermore, small gaps inserted into the sine waves effectively increased the perceived rigidity and resulted in a strong self-motion perception even in the lower amplitude condition. The current investigation, together with previous studies, clearly demonstrated that perceived features, in addition to the physical ones, play a key role in visual self-motion perception. Visual stimuli, perceived as more rigid, provide a more reliable frame of reference in the observers’ spatial orientation, determining their self-motion perception.


2014 ◽  
Vol 232 (9) ◽  
pp. 2797-2806 ◽  
Author(s):  
Joshua L. Haworth ◽  
Srikant Vallabhajosula ◽  
Nicholas Stergiou

1966 ◽  
Author(s):  
DONALD N. FARRER ◽  
JIM MILNER
Keyword(s):  

2012 ◽  
Author(s):  
Joshua Haworth ◽  
Nathaniel Hunt ◽  
Yawen Yu ◽  
Nicholas Stergiou

1976 ◽  
Author(s):  
P. C. Dodwell ◽  
B. N. Timney ◽  
V. F. Emerson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document