scholarly journals Modeling Depolarization Delay, Sodium Currents, and Electrical Potentials in Cardiac Transverse Tubules

2019 ◽  
Vol 10 ◽  
Author(s):  
Sarah Helena Vermij ◽  
Hugues Abriel ◽  
Jan Pavel Kucera
2003 ◽  
Vol 775 ◽  
Author(s):  
Ivan Stanish ◽  
Daniel A. Lowy ◽  
Alok Singh

AbstractImmobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.


2021 ◽  
Vol 13 (1) ◽  
pp. 91-100
Author(s):  
Philip Poillot ◽  
Christine L. Le Maitre ◽  
Jacques M. Huyghe

AbstractThe strain-generated potential (SGP) is a well-established mechanism in cartilaginous tissues whereby mechanical forces generate electrical potentials. In articular cartilage (AC) and the intervertebral disc (IVD), studies on the SGP have focused on fluid- and ionic-driven effects, namely Donnan, diffusion and streaming potentials. However, recent evidence has indicated a direct coupling between strain and electrical potential. Piezoelectricity is one such mechanism whereby deformation of most biological structures, like collagen, can directly generate an electrical potential. In this review, the SGP in AC and the IVD will be revisited in light of piezoelectricity and mechanotransduction. While the evidence base for physiologically significant piezoelectric responses in tissue is lacking, difficulties in quantifying the physiological response and imperfect measurement techniques may have underestimated the property. Hindering our understanding of the SGP further, numerical models to-date have negated ferroelectric effects in the SGP and have utilised classic Donnan theory that, as evidence argues, may be oversimplified. Moreover, changes in the SGP with degeneration due to an altered extracellular matrix (ECM) indicate that the significance of ionic-driven mechanisms may diminish relative to the piezoelectric response. The SGP, and these mechanisms behind it, are finally discussed in relation to the cell response.


1980 ◽  
Vol 255 (13) ◽  
pp. 6290-6298 ◽  
Author(s):  
N.R. Brandt ◽  
A.H. Caswell ◽  
J.P. Brunschwig

2003 ◽  
Vol 90 (3) ◽  
pp. 1635-1642 ◽  
Author(s):  
Ilya A. Rybak ◽  
Krzysztof Ptak ◽  
Natalia A. Shevtsova ◽  
Donald R. McCrimmon

Rapidly inactivating and persistent sodium currents have been characterized in acutely dissociated neurons from the area of rostroventrolateral medulla that included the pre-Bötzinger Complex. As demonstrated in many studies in vitro, this area can generate endogenous rhythmic bursting activity. Experiments were performed on neonate and young rats (P1-15). Neurons were investigated using the whole cell voltage-clamp technique. Standard activation and inactivation protocols were used to characterize the steady-state and kinetic properties of the rapidly inactivating sodium current. Slow depolarizing ramp protocols were used to characterize the noninactivating sodium current. The “window” component of the rapidly inactivating sodium current was calculated using mathematical modeling. The persistent sodium current was revealed by subtraction of the window current from the total noninactivating sodium current. Our results provide evidence of the presence of persistent sodium currents in neurons of the rat rostroventrolateral medulla and determine voltage-gated characteristics of activation and inactivation of rapidly inactivating and persistent sodium channels in these neurons.


Sign in / Sign up

Export Citation Format

Share Document