scholarly journals Central Nervous System Associated With Light Perception and Physiological Responses of Birds

2021 ◽  
Vol 12 ◽  
Author(s):  
Seong W. Kang

Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.

1982 ◽  
Vol 45 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Yutaka SANO ◽  
Yoshihiro TAKEUCHI ◽  
Hiroshi KIMURA ◽  
Motoko GOTO ◽  
Mitsuhiro KAWATA ◽  
...  

The anatomy of three neurosecretory cell types in the central nervous system (c.n.s.) of the gastropod mollusc Lymnaea stagnalis (L.) - the Dark Green Cells, Yellow Cells and Yellow-green Cells - has been studied by using bright and dark field illumination of material stained for neurosecretion by the Alcian Blue-Alcian Yellow technique. The neuronal geometry of single and groups of neurosecretory cells of the various types has been reconstructed from serial sections, and the likely destination of most of their processes has been determined. Dark Green Cells are monopolar, occur exclusively within the central nervous system (c.n.s.), have few or no branches terminating in neuropile, and send axons to the surface of the pleuro-parietal and pleuro-cerebral connectives. The majority of Dark Green Cell axons however (80- 85%), project down nerves which innervate ventral and anterior parts of the head-foot, the neck and the mantle. Dark Green Cell axons can be found in small nerves throughout these areas, and may terminate in a fine plexus of axons on the surfaces of the nerves. Since previous experimental work has shown that the Dark Green Cells are involved in osmotic or ionic regulation, these results suggest that the target organ of the Dark Green Cells may be the skin. Yellow Cells occur both within and outside the c.n.s. They are usually monopolar, but can be bipolar. They have several axons which normally arise separately from a single pole of the cell body, or close to it. One or more processes leave the cell proximal to the point where separate axons arise, and may run unbranched for some distance through neuropile before terminating in fine branches and blobs of various sizes. These branches may release hormone inside the c.n.s. Yellow-green Cells are mono-, bi- or multi-polar, and like the Yellow Cells are found both within and outside the c.n.s. Some Yellow-green Cells, though not all, have projections which terminate in neuropile in fine branches and blobs. Yellowgreen Cell bodies which occur in nerves can project back along the nerve into the c.n.s. The axons of Yellow Cells and Yellow-green Cells project to release sites in various ways. Some project into the connective tissue sheath of the c.n.s., which serves as a neurohaemal organ, either directly through the surface of a ganglion, or from the pleuro-cerebral or pleuro-parietal connectives. Other axons leave the c.n.s. via nerves leaving the left and right parietal and visceral ganglia; projections into the intestinal, anal, and internal right parietal nerves being most numerous. Axons which may be from either, or both Yellow Cells and Yellow-green Cells, can be found along the entire unbranched lengths of these nerves, and in subsequent branches which innervate organs lying in the anterior turn of the shell. All of these organs are closely associated with the lung cavity. The pattern of release of hormone which this arrangement implies may have been adopted to ensure a rapid distribution of hormone throughout the circulation following release, or to increase the concentration of hormone in blood flowing through target organs such as the kidney, lung walls or the heart.


Sign in / Sign up

Export Citation Format

Share Document