scholarly journals Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series

2018 ◽  
Vol 9 ◽  
Author(s):  
Dimosthenis Traganos ◽  
Peter Reinartz
2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2020 ◽  
Vol 19 ◽  
pp. 100347 ◽  
Author(s):  
Asmaa Nasser Mohamed Eid ◽  
C.O. Olatubara ◽  
T.A. Ewemoje ◽  
Mohamed Talaat El-Hennawy ◽  
Haitham Farouk
Keyword(s):  

Author(s):  
Thu Trang Lê ◽  
Abdourrahmane M. Atto ◽  
Emmanuel Trouvé ◽  
Akhmad Solikhin ◽  
Virginie Pinel

2017 ◽  
Vol 9 (6) ◽  
pp. 625 ◽  
Author(s):  
Wenzhuo Li ◽  
Kaimin Sun ◽  
Deren Li ◽  
Ting Bai ◽  
Haigang Sui

2013 ◽  
Vol 10 (80) ◽  
pp. 20120935 ◽  
Author(s):  
Abdullah Hamadeh ◽  
Brian Ingalls ◽  
Eduardo Sontag

The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli . It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data.


Sign in / Sign up

Export Citation Format

Share Document