scholarly journals The Brittle Rachis Trait in Species Belonging to the Triticeae and Its Controlling Genes Btr1 and Btr2

2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoxue Zeng ◽  
Kohei Mishina ◽  
Juqing Jia ◽  
Assaf Distelfeld ◽  
Peter Jeff Maughan ◽  
...  
Keyword(s):  
Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Moran Nave ◽  
Mihriban Taş ◽  
John Raupp ◽  
Vijay K. Tiwari ◽  
Hakan Ozkan ◽  
...  

Triticum turgidum and T. timopheevii are two tetraploid wheat species sharing T. urartu as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes). We previously described the loss-of-function mutations in the Brittle Rachis 1 genes BTR1-A and BTR1-B in the A and B subgenomes, respectively, that are responsible for this most visible domestication trait in T. turgidum. Resequencing of a large panel of wild and domesticated T. turgidum accessions subsequently led to the identification of the two progenitor haplotypes of the btr1-A and btr1-B domesticated alleles. Here, we extended the haplotype analysis to other T. turgidum subspecies and to the BTR1 homologues in the related T. timopheevii species. Our results showed that all the domesticated wheat subspecies within T. turgidum share common BTR1-A and BTR1-B haplotypes, confirming their common origin. In T. timopheevii, however, we identified a novel loss-of-function btr1-A allele underlying a partially brittle spike phenotype. This novel recessive allele appeared fixed within the pool of domesticated Timopheev’s wheat but was also carried by one wild timopheevii accession exhibiting partial brittleness. The promoter region for BTR1-B could not be amplified in any T. timopheevii accessions with any T. turgidum primer combination, exemplifying the gene-level distance between the two species. Altogether, our results support the concept of independent domestication processes for the two polyploid, wheat-related species.


Hereditas ◽  
2002 ◽  
Vol 137 (3) ◽  
pp. 180-185 ◽  
Author(s):  
N. WATANABE ◽  
K. SUGIYAMA ◽  
Y. YAMAGISHI ◽  
Y. SAKATA

Plant Science ◽  
2019 ◽  
Vol 285 ◽  
pp. 193-199 ◽  
Author(s):  
Moran Nave ◽  
Raz Avni ◽  
Esra Çakır ◽  
Vitaly Portnoy ◽  
Hanan Sela ◽  
...  
Keyword(s):  

2011 ◽  
Vol 41 (No. 2) ◽  
pp. 39-44 ◽  
Author(s):  
N. Watanabe ◽  
N. Takesada ◽  
Y. Fujii ◽  
P. Martinek

The brittle rachis phenotype is of adaptive value in wild grass species because it causes spontaneous spike shattering. The genes on the homoeologous group 3 chromosomes determine the brittle rachis in Triticeae. A few genotypes with brittle rachis have also been found in the cultivated Triticum. Using microsatellite markers, the homoeologous genes for brittle rachis were mapped in hexaploid wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. conv. durum /Desf./) and Aegilops tauschii Coss. On chromosome 3AS, the gene for brittle rachis, Br<sub>2</sub>, was linked with the centromeric marker, Xgwm32, at the distance of 13.3 cM. Br<sub>3 </sub>was located on chromosome 3BS and linked with the centromeric marker,<br />Xgwm72 (14.2 cM). Br<sub>1 </sub>was located on chromosome 3DS. The distance from the centromeric marker Xgdm72 was 23.6 cM. The loci Br<sub>1</sub>, Br<sub>2</sub> and Br<sub>3</sub> determine disarticulation of rachides above the junction of the rachilla with the rachis so that a fragment of rachis is attached below each spikelet. The rachides of Ae. tauschii are brittle at every joint, so that the mature spike disarticulates into barrel type. The brittle rachis was determined by a dominant gene, Br<sup>t</sup>, which was linked to the centromeric marker, Xgdm72 (19.7 cM), on chromosome 3DS. A D-genome introgression line, R-61, was derived from the cross Bet Hashita/Ae. tauschii, whose rachis disarticulated as a wedge type. The gene for brittle rachis of R-61, tentatively designated as Br<sup>61</sup>, was distally located on chromosome 3DS, and was linked with the centromeric marker, Xgdm72 (27.5 cM). We discussed how the brittle rachis of R-61 originated genetically. &nbsp; &nbsp;


1943 ◽  
Vol 35 (2) ◽  
pp. 101-106 ◽  
Author(s):  
I. J. Johnson ◽  
Ewert Åberg
Keyword(s):  

2006 ◽  
Vol 47 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Nobuyoshi Watanabe ◽  
Youko Fujii ◽  
Noriko Kato ◽  
Tomohiro Ban ◽  
Petr Martinek

Sign in / Sign up

Export Citation Format

Share Document