scholarly journals Accumulation of Amino Acids and Flavonoids in Young Tea Shoots Is Highly Correlated With Carbon and Nitrogen Metabolism in Roots and Mature Leaves

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianwei Liu ◽  
Meiya Liu ◽  
Hanhan Fang ◽  
Qunfeng Zhang ◽  
Jianyun Ruan

The quality of tea product and the metabolism of quality-related compounds in young shoots are significantly affected by the nitrogen(N) supply. However, little is known of the metabolic changes that take place in tea roots and mature leaves under different supplies, which has a large effect on the accumulation of quality-related compounds in young shoots. In this study, young shoots, mature leaves, and roots under different N conditions were subjected to metabolite profiling using gas chromatography and ultraperformance liquid chromatography, coupled with quadrupole time-of-flight mass spectrometry. The contents of free amino acids (e.g., theanine and glutamate) involved in N metabolism were significantly greater under high N than under low N, while a high N supply reduced soluble sugars (e.g., glucose) in all three tissues. Organic acids (e.g., malate, fumarate, α-ketoglutatare, and succinate) involved in tricarboxylic acid cycle remarkably increased as the nitrogen supply increased, which confirms that carbon (C) allocation was restricted by increasing the nitrogen supply, especially in mature leaves. RT-PCR results indicated that gene expression related to nitrogen assimilation significantly increased in roots with increasing nitrogen supply, which had a significant positive relationship with the level of free amino acids in young shoots. In addition, the expression of most genes involved in flavonoid synthesis was significantly upregulated under conditions of low nitrogen supply relative to high nitrogen supply in young shoot and roots. These data suggest that enhanced assimilation of N in tea roots and the coordinated regulation of C (sugars, organic acids, and flavonoids) and N(amino acids) in mature leaves can lead to a high accumulation of amino acids in young shoots. Furthermore, as the N supply increased, more C was partitioned into compounds containing N in mature leaves and roots, resulting in a decrease in flavonoids in young shoots. In conclusion, the accumulation of amino acids and flavonoids in young tea shoots is highly correlated with carbon and nitrogen metabolism in roots and mature leaves.

2018 ◽  
Vol 165 (12) ◽  
Author(s):  
Tomoko Koito ◽  
Syuku Saitou ◽  
Toshihiro Nagasaki ◽  
Syosei Yamagami ◽  
Toshiro Yamanaka ◽  
...  

1972 ◽  
Vol 19 (11) ◽  
pp. 2651-2656 ◽  
Author(s):  
T. L. Perry ◽  
H. D. Sanders ◽  
Shirley Hansen ◽  
Donna Lesk ◽  
Marlene Kloster ◽  
...  

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 796C-796
Author(s):  
Guihong Bi* ◽  
Carolyn Scagel ◽  
Lailiang Cheng ◽  
Leslie Fuchigami

June-budded `Nonpareil/Nemaguard' almond (Prunus dulcis (Mill) D.A. Webb) trees were fertigated with one of five nitrogen (N) concentrations (0, 5, 10, 15, or 20 mm) in a modified Hoagland's solution from July to September. In October, the trees were sprayed twice with either water or 3% urea, then harvested after natural leaf fall and stored at 2°C. Trees were destructively sampled during winter storage to determine their concentrations of amino acids, protein, and non-structural carbohydrates (TNC). Increasing N supply either via N fertigation during the growing season or with foliar urea applications in the fall increased the concentrations of both free and total amino acids, whereas decreased their C/N ratios. Moreover, as the N supply increased, the proportion of nitrogen stored as free amino acids also increased. However, protein was still the main form of N used for storage. The predominant amino acid in both the free and total amino-acid pools was arginine. Arginin N accounted for an increasing proportion of the total N in both the free and total amino acids as the N supply was increased. However, the proportion of arginine N was higher in the free amino acids than in the total amino acids. A negative relationship was found between total amino acid and non-structural carbohydrate concentrations, suggesting that TNC is increasingly used for N assimilation as the supply of N increases. Urea applications decreased the concentrations of glucose, fructose, and sucrose, but had little influence on concentrations of sorbitol and starch. We conclude that protein is the primary form of storage N, and that arginine is the predominant amino acid. Furthermore, the synthesis of amino acids and proteins comes at the expense of non-structural carbohydrates.


1977 ◽  
pp. 397-412
Author(s):  
E. A. Bell ◽  
M. Y. Qureshi ◽  
B. V. Charlwood ◽  
D. J. Pilbeam ◽  
C. S. Evans

Sign in / Sign up

Export Citation Format

Share Document