scholarly journals Optimizing Plant Disease Management in Agricultural Ecosystems Through Rational In-Crop Diversification

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan-Ping Wang ◽  
Zhe-Chao Pan ◽  
Li-Na Yang ◽  
Jeremy J. Burdon ◽  
Hanna Friberg ◽  
...  

Biodiversity plays multifaceted roles in societal development and ecological sustainability. In agricultural ecosystems, using biodiversity to mitigate plant diseases has received renewed attention in recent years but our knowledge of the best ways of using biodiversity to control plant diseases is still incomplete. In term of in-crop diversification, it is not clear how genetic diversity per se in host populations interacts with identifiable resistance and other functional traits of component genotypes to mitigate disease epidemics and what is the best way of structuring mixture populations. In this study, we created a series of host populations by mixing different numbers of potato varieties showing different late blight resistance levels in different proportions. The amount of naturally occurring late blight disease in the mixture populations was recorded weekly during the potato growing seasons. The percentage of disease reduction (PDR) in the mixture populations was calculated by comparing their observed late blight levels relative to that expected when they were planted in pure stands. We found that PDR in the mixtures increased as the number of varieties and the difference in host resistance (DHR) between the component varieties increased. However, the level of host resistance in the potato varieties had little impact on PDR. In mixtures involving two varieties, the optimum proportion of component varieties for the best PDR depended on their DHR, with an increasing skewness to one of the component varieties as the DHR between the component varieties increased. These results indicate that mixing crop varieties can significantly reduce disease epidemics in the field. To achieve the best disease mitigation, growers should include as many varieties as possible in mixtures or, if only two component mixtures are possible, increase DHR among the component varieties.

2014 ◽  
Vol 15 (2) ◽  
pp. 47
Author(s):  
Eny Ida Riyanti ◽  
Edy Listanto ◽  
Alberta Dinar Ambarwati

Late blight caused by Phytophthora infestans is an important disease on potato.  Several potato hybrids have been generated by crossing local varieties (Atlantic and Granola) with Katahdin SP951 which contains late blight resistance gene RB.  Prior to release, these hybrids need to be evaluated for their environ-mental effects on non-target organisms and natural pests and diseases. The objectives of the study were to investigate the effect of LBR potato hybrids on beneficial soil microbes, pests and diseases. The trial was conducted in the confined field trial (CFT) in Lembang, West Java. The parental non-transgenic (NT) clones (Granola, Atlantic and Katahdin) and LBR hybrids (four clones of Atlantic x Katahdin SP951 hybrids; 10 clones of Granola x Katahdin SP951) were planted at a plant spacing of 30 cm x 70 cm. Fungicide applications were used as treat-ments (no spray, five and twenty times sprays). The experi-ment was arranged in a randomized completely block design with three replications. The parameters determined were popula-tions of N2 fixing and P solubilizing bacteria, soil C/N ratio as well as natural pests and diseases. The results showed that the transgenic LBR potato hybrids did not have negative effect on N fixing bacteria. The bacterial populations were around 1010-11 cells g-1 soil before planting, 1012 cells at 1.5 months after planting (MAP) and 108 cells after harvest. For P- solubilizing bacteria, their populations were 1010 cells before planting, 1012 cells at 1.5 MAP and 1011 cells g-1  soil after harvest. The soil C/N ratio of the transgenic plot was not statistically different compared to non-transgenic plot, i.e. 12-15 before planting, 10-11 at 1.5 MAP, and 10 after harvest in non-spray plot. Pests and diseases such as Alternaria solani, Liriomyza, potato tubber moth, aphid and mites on the transgenic and non-transgenic plots were statistically not different. The resistance score for A. solani was 7.2 (parental tansgenic) and 7.6 (parental non-transgenic); for Liriomyza it was 2.07 (parental transgenic) and 2.32 insect per plant (parental non-transgenic), the PTM was 0.63 (parental transgenic) and 0.73 insect per plant (parental non-transgenic), aphid and mites were 0.75 (parental transgenic) and 1.68 insects per plant (parental non-transgenic). The study indicated that LBR potato hybrids did not have any negative impacts on non-target organisms.


Plant Disease ◽  
2020 ◽  
pp. PDIS-06-20-1367 ◽  
Author(s):  
Hari S. Karki ◽  
Shelly H. Jansky ◽  
Dennis A. Halterman

Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.


Author(s):  
Terje Tähtjärv ◽  
Aide Tsahkna ◽  
Sirje Tamm

Growing more resistant potato varieties is one of the most effective strategies to control late blight, to protect potato yield and to prevent harming the environment. The main aim of our study was to identify potato varieties with higher resistance to late blight and which were high yielding in Estonian conditions and suitable for organic farming. During the three-year trial, twelve potato varieties were tested at the Jõgeva Plant Breeding Institute (PBI) in 2010-2012. Foliage late blight (Phytophtora infestance (Mont) de Bary) and yield were estimated. First infection of late blight occurred in different times during the trial years. The three-year average infection level indicated that early varieties ‘Arielle’, ‘Impala’ and ‘Princess’ were more damaged than other varieties in the first estimation. Late varieties ‘Ando’, ‘Anti’, ‘Juku’ and ‘Sarme’ had higher late blight resistance. Their foliage damage remained less than 30% in the last estimation. The new medium variety ‘Teele’ had a lower infection rate than other medium varieties and did not significantly differ from late varieties. Based on these data, late varieties, early variety ‘Maret’ and medium variety ‘Teele’ can be considered suitable for organic farming. The new variety ‘Teele’ had the highest threeyear average tuber yield (52.8 t ha-1). Varieties ‘Impala’, ‘Princess’ and ‘Secura’ had significantly lower yield. Yield loss of these varieties might have been caused by higher late blight infection during trial years


2014 ◽  
Vol 15 (2) ◽  
pp. 47
Author(s):  
Eny Ida Riyanti ◽  
Edy Listanto ◽  
Alberta Dinar Ambarwati

Late blight caused by Phytophthora infestans is an important disease on potato.  Several potato hybrids have been generated by crossing local varieties (Atlantic and Granola) with Katahdin SP951 which contains late blight resistance gene RB.  Prior to release, these hybrids need to be evaluated for their environ-mental effects on non-target organisms and natural pests and diseases. The objectives of the study were to investigate the effect of LBR potato hybrids on beneficial soil microbes, pests and diseases. The trial was conducted in the confined field trial (CFT) in Lembang, West Java. The parental non-transgenic (NT) clones (Granola, Atlantic and Katahdin) and LBR hybrids (four clones of Atlantic x Katahdin SP951 hybrids; 10 clones of Granola x Katahdin SP951) were planted at a plant spacing of 30 cm x 70 cm. Fungicide applications were used as treat-ments (no spray, five and twenty times sprays). The experi-ment was arranged in a randomized completely block design with three replications. The parameters determined were popula-tions of N2 fixing and P solubilizing bacteria, soil C/N ratio as well as natural pests and diseases. The results showed that the transgenic LBR potato hybrids did not have negative effect on N fixing bacteria. The bacterial populations were around 1010-11 cells g-1 soil before planting, 1012 cells at 1.5 months after planting (MAP) and 108 cells after harvest. For P- solubilizing bacteria, their populations were 1010 cells before planting, 1012 cells at 1.5 MAP and 1011 cells g-1  soil after harvest. The soil C/N ratio of the transgenic plot was not statistically different compared to non-transgenic plot, i.e. 12-15 before planting, 10-11 at 1.5 MAP, and 10 after harvest in non-spray plot. Pests and diseases such as Alternaria solani, Liriomyza, potato tubber moth, aphid and mites on the transgenic and non-transgenic plots were statistically not different. The resistance score for A. solani was 7.2 (parental tansgenic) and 7.6 (parental non-transgenic); for Liriomyza it was 2.07 (parental transgenic) and 2.32 insect per plant (parental non-transgenic), the PTM was 0.63 (parental transgenic) and 0.73 insect per plant (parental non-transgenic), aphid and mites were 0.75 (parental transgenic) and 1.68 insects per plant (parental non-transgenic). The study indicated that LBR potato hybrids did not have any negative impacts on non-target organisms.


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 134 ◽  
Author(s):  
Stefanie Ranf

Infestations of crop plants with pathogens pose a major threat to global food supply. Exploiting plant defense mechanisms to produce disease-resistant crop varieties is an important strategy to control plant diseases in modern plant breeding and can greatly reduce the application of agrochemicals. The discovery of different types of immune receptors and a detailed understanding of their activation and regulation mechanisms in the last decades has paved the way for the deployment of these central plant immune components for genetic plant disease management. This review will focus on a particular class of immune sensors, termed pattern recognition receptors (PRRs), that activate a defense program termed pattern-triggered immunity (PTI) and outline their potential to provide broad-spectrum and potentially durable disease resistance in various crop species—simply by providing plants with enhanced capacities to detect invaders and to rapidly launch their natural defense program.


2008 ◽  
Vol 65 (spe) ◽  
pp. 71-75 ◽  
Author(s):  
Terry James Gillespie ◽  
Paulo Cesar Sentelhas

Many plant disease outbreaks are triggered by suitably warm temperatures during periods of leaf wetness. Measurements or estimations of leaf wetness duration provided by Agrometeorologists have allowed Plant Pathologists to devise weather timed spray schemes which often reduce the number of sprays required to control plant diseases, thus lowering costs and benefitting the environment. In the near future, tools such as numerical weather models with small grid spacings, and improved weather radar, are expected to reduce the need for tight networks of surface observations. The weather models will also provide growers with forecast warnings of potential upcoming disease outbreaks, which will further enhance the contribution of agrometeorology to plant disease management.


2017 ◽  
Vol 19 (2) ◽  
pp. 85-90
Author(s):  
Satoru Iketani ◽  
Keiichi Senda ◽  
Hiroshi Matsunaga ◽  
Kenji Sekiguchi

2017 ◽  
Vol 178 (4) ◽  
pp. 119-126 ◽  
Author(s):  
N. M. Zoteyeva ◽  
◽  
O. S. Kosareva ◽  
Z. Z. Evdokimova ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document