scholarly journals Artificial Intelligence to Analyze the Cortical Thickness Through Age

2021 ◽  
Vol 4 ◽  
Author(s):  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Dora-Luz Almanza-Ojeda ◽  
Pascal Fallavollita ◽  
Jason Steffener

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31 regions in the left hemisphere of the brain as well as from 31 regions in the right hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the number of neurons in the hidden layer. These neural networks were used to create a model for the cortical thickness through age for each region in the brain. Using the artificial neural networks and kernels with seven points, numerical differentiation was used to compute the derivative of the cortical thickness with respect to age. The derivative was computed to estimate the cortical thickness speed. Finally, color bands were created for each region in the brain to identify a positive derivative, that is, a part of life with an increase in cortical thickness. Likewise, the color bands were used to identify a negative derivative, that is, a lifetime period with a cortical thickness reduction. Regions of the brain with similar derivatives were organized and displayed in clusters. Computer simulations showed that some regions exhibit abrupt changes in cortical thickness at specific periods of life. The simulations also illustrated that some regions in the left hemisphere do not follow the pattern of the same region in the right hemisphere. Finally, it was concluded that each region in the brain must be dynamically modeled. One advantage of using artificial neural networks is that they can learn and model non-linear and complex relationships. Also, artificial neural networks are immune to noise in the samples and can handle unseen data. That is, the models based on artificial neural networks can predict the behavior of samples that were not used for training. Furthermore, several studies have shown that artificial neural networks are capable of deriving information from imprecise data. Because of these advantages, the results obtained in this study by the artificial neural networks provide valuable information to analyze and model the cortical thickness.

ITNOW ◽  
2021 ◽  
Vol 63 (2) ◽  
pp. 56-57
Author(s):  
Grace Lindsay

Abstract Inspired by the brain, artificial neural networks are core to modern artificial intelligence. Grace Lindsay, author of Models of the Mind, explains concerns over the cognitive limits of these systems.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1070
Author(s):  
Abdul Gani Abdul Jameel

The self-learning capabilities of artificial neural networks (ANNs) from large datasets have led to their deployment in the prediction of various physical and chemical phenomena. In the present work, an ANN model was developed to predict the yield sooting index (YSI) of oxygenated fuels using the functional group approach. A total of 265 pure compounds comprising six chemical classes, namely paraffins (n and iso), olefins, naphthenes, aromatics, alcohols, and ethers, were dis-assembled into eight constituent functional groups, namely paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic –CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups, alcoholic OH groups, and ether O groups. These functional groups, in addition to molecular weight and branching index, were used as inputs to develop the ANN model. A neural network with two hidden layers was used to train the model using the Levenberg–Marquardt (ML) training algorithm. The developed model was tested with 15% of the random unseen data points. A regression coefficient (R2) of 0.99 was obtained when the experimental values were compared with the predicted YSI values from the test set. An average error of 3.4% was obtained, which is less than the experimental uncertainty associated with most reported YSI measurements. The developed model can be used for YSI prediction of hydrocarbon fuels containing alcohol and ether-based oxygenates as additives with a high degree of accuracy.


Author(s):  
Martín Montes Rivera ◽  
Alejandro Padilla ◽  
Juana Canul-Reich ◽  
Julio Ponce

Vision sense is achieved using cells called rods (luminosity) and cones (color). Color perception is required when interacting with educational materials, industrial environments, traffic signals, among others, but colorblind people have difficulties perceiving colors. There are different tests for colorblindness like Ishihara plates test, which have numbers with colors that are confused with colorblindness. Advances in computer sciences produced digital assistants for colorblindness, but there are possibilities to improve them using artificial intelligence because its techniques have exhibited great results when classifying parameters. This chapter proposes the use of artificial neural networks, an artificial intelligence technique, for learning the colors that colorblind people cannot distinguish well by using as input data the Ishihara plates and recoloring the image by increasing its brightness. Results are tested with a real colorblind people who successfully pass the Ishihara test.


Author(s):  
Pankaj Dadheech ◽  
Ankit Kumar ◽  
Vijander Singh ◽  
Linesh Raja ◽  
Ramesh C. Poonia

The networks acquire an altered move towards the difficulty solving skills rather than that of conventional computers. Artificial neural networks are comparatively crude electronic designs based on the neural structure of the brain. The chapter describes two different types of approaches to training, supervised and unsupervised, as well as the real-time applications of artificial neural networks. Based on the character of the application and the power of the internal data patterns we can normally foresee a network to train quite well. ANNs offers an analytical solution to conventional techniques that are often restricted by severe presumptions of normality, linearity, variable independence, etc. The chapter describes the necessities of items required for pest management through pheromones such as different types of pest are explained and also focused on use of pest control pheromones.


2016 ◽  
Vol 35 (74) ◽  
Author(s):  
Tania Camila Niño Sandoval ◽  
Sonia Victoria Guevara Pérez ◽  
Fabio Augusto González ◽  
Robinson Andrés Jaque ◽  
Clementina Infante Contreras

<p><em><strong><span>Background:</span></strong></em><span class="apple-converted-space"><span> </span></span><span>Predicting mandibular morphology is important in facial reconstruction for forensic purposes as in orthodontics and maxillofacial surgery. This process has been performed through parametric and linear methods based on Caucasian populations. Also, these analyzes are performed on lateral cephalograms, but a prediction from a posteroanterior view is not taken into account.<span class="apple-converted-space"> </span><em><strong>Purpose:</strong></em><span class="apple-converted-space"> </span>To predict through artificial neural networks the mandibular morphology using craniomaxillary measures in posteroanterior radiographs.<span class="apple-converted-space"> </span><em><strong>Methods:</strong></em><span class="apple-converted-space"> </span>229 standardized posteroanterior radiographs from Colombian young adults of both sexes were collected. Coordinates of craniofacial skeletal landmarks were used to create mandibular and craniomaxillary measures. 17 predictor craniomaxillary input variables were selected, measuring widths, heights, and angles. Similarly, 13 mandibular measures were selected to be predicted, considering both the right and left sides. Artificial neural networks were used for the prediction process and it was evaluated by a correlation coefficient using a ridge regression between real value and the predicted value.<span class="apple-converted-space"> </span><em><strong>Results:</strong></em><span class="apple-converted-space"> </span>The results found in the model were significant especially for 5 variables of morphological importance in the forensic field: right mandibular ramus (Cdd-God), bigonial width (Goi-God), bicondylar width (Cdi-Cdd), and distance between the condyles to the menton (Cdd-Me and Cdi-Me).<span class="apple-converted-space"> </span><em><strong>Conclusions:</strong></em><span class="apple-converted-space"> </span>An important prediction capacity in 5 measures of forensic importance in patients with skeletal Class I, Class II and Class III was found in both sexes.</span></p>


Proceedings ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Francisco Cedron ◽  
Sara Alvarez-Gonzalez ◽  
Alejandro Pazos ◽  
Ana B. Porto-Pazos

The artificial neural networks used in a multitude of fields are achieving good results. However, these systems are inspired in the vision of classical neuroscience where neurons are the only elements that process information in the brain. Advances in neuroscience have shown that there is a type of glial cell called astrocytes that collaborate with neurons to process information. In this work, a connectionist system formed by neurons and artificial astrocytes is presented. The astrocytes can have different configurations to achieve a biologically more realistic behaviour. This work indicates that the use of different artificial astrocytes behaviours is beneficial.


Sign in / Sign up

Export Citation Format

Share Document