scholarly journals Weakly Supervised Learning for Categorization of Medical Inquiries for Customer Service Effectiveness

Author(s):  
Shikha Singhal ◽  
Bharat Hegde ◽  
Prathamesh Karmalkar ◽  
Justna Muhith ◽  
Harsha Gurulingappa

With the growing unstructured data in healthcare and pharmaceutical, there has been a drastic adoption of natural language processing for generating actionable insights from text data sources. One of the key areas of our exploration is the Medical Information function within our organization. We receive a significant amount of medical information inquires in the form of unstructured text. An enterprise-level solution must deal with medical information interactions via multiple communication channels which are always nuanced with a variety of keywords and emotions that are unique to the pharmaceutical industry. There is a strong need for an effective solution to leverage the contextual knowledge of the medical information business along with digital tenants of natural language processing (NLP) and machine learning to build an automated and scalable process that generates real-time insights on conversation categories. The traditional supervised learning methods rely on a huge set of manually labeled training data and this dataset is difficult to attain due to high labeling costs. Thus, the solution is incomplete without its ability to self-learn and improve. This necessitates techniques to automatically build relevant training data using a weakly supervised approach from textual inquiries across consumers, healthcare professionals, sales, and service providers. The solution has two fundamental layers of NLP and machine learning. The first layer leverages heuristics and knowledgebase to identify the potential categories and build an annotated training data. The second layer, based on machine learning and deep learning, utilizes the training data generated using the heuristic approach for identifying categories and sub-categories associated with verbatim. Here, we present a novel approach harnessing the power of weakly supervised learning combined with multi-class classification for improved categorization of medical information inquiries.

2021 ◽  
Vol 15 ◽  
Author(s):  
Nora Hollenstein ◽  
Cedric Renggli ◽  
Benjamin Glaus ◽  
Maria Barrett ◽  
Marius Troendle ◽  
...  

Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity for this purpose is largely unexplored as of yet. In this paper, we present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks, with a special focus on which features of the signal are most beneficial. We present a multi-modal machine learning architecture that learns jointly from textual input as well as from EEG features. We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal. Moreover, for a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines. For more complex tasks such as relation detection, only the contextualized BERT embeddings outperform the baselines in our experiments, which raises the need for further research. Finally, EEG data shows to be particularly promising when limited training data is available.


Author(s):  
Oana Frunza ◽  
Diana Inkpen

This book chapter presents several natural language processing (NLP) and machine learning (ML) techniques that can help achieve a better medical practice by means of extracting relevant medical information from the wealth of textual data. The chapter describes three major tasks: building intelligent tools that can help in the clinical decision making, tools that can automatically identify relevant medical information from the life-science literature, and tools that can extract semantic relations between medical concepts. Besides introducing and describing these tasks, methodological settings accompanied by representative results obtained on real-life data sets are presented.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


Sign in / Sign up

Export Citation Format

Share Document