scholarly journals Using Direct Numerical Simulation of Pore-Level Events to Improve Pore-Network Models for Prediction of Residual Trapping of CO2

2022 ◽  
Vol 3 ◽  
Author(s):  
Amir H. Kohanpur ◽  
Yu Chen ◽  
Albert J. Valocchi

Direct numerical simulation and pore-network modeling are common approaches to study the physics of two-phase flow through natural rocks. For assessment of the long-term performance of geological sequestration of CO2, it is important to model the full drainage-imbibition cycle to provide an accurate estimate of the trapped CO2. While direct numerical simulation using pore geometry from micro-CT rock images accurately models two-phase flow physics, it is computationally prohibitive for large rock volumes. On the other hand, pore-network modeling on networks extracted from micro-CT rock images is computationally efficient but utilizes simplified physics in idealized geometric pore elements. This study uses the lattice-Boltzmann method for direct numerical simulation of CO2-brine flow in idealized pore elements to develop a new set of pore-level flow models for the pore-body filling and snap-off events in pore-network modeling of imbibition. Lattice-Boltzmann simulations are conducted on typical idealized pore-network configurations, and the interface evolution and local capillary pressure are evaluated to develop modified equations of local threshold capillary pressure of pore elements as a function of shape factor and other geometrical parameters. The modified equations are then incorporated into a quasi-static pore-network flow solver. The modified model is applied on extracted pore-network of sandstone samples, and saturation of residual trapped CO2 is computed for a drainage-imbibition cycle. The modified model yields different statistics of pore-level events compared with the original model; in particular, the occurrence of snap-off in pore-throats is reduced resulting in a more frontal displacement pattern along the main injection direction. Compared to the original model, the modified model is in closer agreement with the residual trapped CO2 obtained from core flow experiments and direct numerical simulation.

2021 ◽  
Vol 143 (3) ◽  
pp. 106-114
Author(s):  
Zh.K. Akasheva ◽  
◽  
D.A. Bolysbek ◽  
B.K. Assilbekov ◽  
A.K. Yergesh ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiang Huang ◽  
Wei Zhou ◽  
Daxiang Deng

AbstractPore network modeling (PNM) has been widely investigated in the study of multiphase transport in porous media due to its high computational efficiency. The advantage of PNM is achieved in part at the cost of using simplified geometrical elements. Therefore, the validation of pore network modeling needs further verification. A Shan-Chen (SC) multiphase lattice Boltzmann model (LBM) was used to simulate the multiphase flow and provided as the benchmark. PNM using different definitions of throat radius was performed and compared. The results showed that the capillary pressure and saturation curves agreed well when throat radius was calculated using the area-equivalent radius. The discrepancy of predicted phase occupations from different methods was compared in slice images and the reason can be attributed to the capillary pressure gradients demonstrated in LBM. Finally, the relative permeability was also predicted using PNM and provided acceptable predictions when compared with the results using single-phase LBM.


Sign in / Sign up

Export Citation Format

Share Document