throat radius
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 56)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Nisha Godani

In this paper, the charged thin-shell wormholes have been constructed by using cut-and-paste approach in the framework of [Formula: see text] theory of gravity. The stability analysis is performed in [Formula: see text] gravity formalism, where [Formula: see text] and [Formula: see text] are nonzero constants, with a linear equation of state. The stable and unstable regions have been examined for different values of the parameters involved in the model. The effect of charge and mass on the throat radius is analyzed and stability of thin shell is obtained.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Lv Miaomiao ◽  
Song Benbiao ◽  
Tian Changbing ◽  
Mao Xianyu

AbstractA significant behavior of carbonate reservoirs is poor correlation between porosity and permeability. With the same porosity, the permeability can vary by three orders of magnitude or more. An accurate estimation of permeability for carbonate reservoir has been a challenge for many years. The aim of this study was to establish relationships between pore throat, porosity, and permeability. This study indicates that pore throat radius corresponding to a mercury saturation of 20% (R20) is the best permeability predictor for carbonates with complex porous pore networks. Quantitative analysis was made to achieve three different patterns of pore throat for 417 carbonate samples which cover all pore types of carbonate rocks. Different relationships between porosity, pore throat radius, and permeability have been identified in different patterns, which are utilized to predict more accurate permeability by different pore throat patterns.


2021 ◽  
Vol 11 (24) ◽  
pp. 11954
Author(s):  
He Li ◽  
Xiaodong Wang ◽  
Hailong Huang ◽  
Jiuxin Ning ◽  
Jiyuan Tu

The spontaneous condensation of wet steam often occurs in the steam ejector nozzle, this deteriorates the performance of the steam ejector. In this paper, we take changing the geometric parameters of the nozzle as the focus of our research and construct an internal connection between steam’s condensation behavior and the nozzle’s throat radius, the nozzle’s divergent section expansion angle, and the nozzle’s divergent section length. Our numerical simulation results indicate that an increase in the throat diameter and reduction of the divergent section’s expansion angle can inhibit steam condensation behavior, to a certain extent. In particular, the steam condensation behavior will disappear at a 0° expansion angle, but it is not affected by the change in the divergent section’s length. In addition, the irreversibility that is seen under different changes to the nozzle’s structure parameters was investigated and the results show that the entropy generation that is caused by a phase change accounts for a much higher proportion of the total entropy generation than heat transport and viscous dissipation do. This indicates that steam’s condensation behavior makes a large amount of irreversible energy, resulting in energy waste and reducing the performance of the nozzle. Therefore, this study can provide a theoretical reference for suppressing the spontaneous condensation behavior of steam by changing the nozzle’s geometry.


Author(s):  
Umesh Kumar Sharma ◽  
Shweta ◽  
Ambuj Kumar Mishra

The presence of exotic matter for the existence of the wormhole geometry has been an unavoidable problem in GR. In recent studies, researchers have tried to deal with this issue using modified gravity theories where the WH geometry is explained by the extra curvature terms and NEC’s are not violated signifying the standard matter in the WH geometry. In this paper, we investigate the solutions of traversable wormholes with normal matter in the throat within the framework of symmetric teleparallel gravity [Formula: see text], where [Formula: see text] is the non-metricity scalar that defines the gravitational interaction. We analyze the wormhole geometries for three forms of function [Formula: see text]. First is the linear form [Formula: see text], second a nonlinear form [Formula: see text] and third one a more general quadratic form [Formula: see text] with [Formula: see text], [Formula: see text] and [Formula: see text] being the constants. For all the three cases, the shape function is taken as [Formula: see text] where [Formula: see text] is the throat radius. A special variable redshift function is considered for the discussion. All the energy conditions are then examined for the existence and stability of the wormhole geometry.


Author(s):  
Nicolas Carrizo ◽  
◽  
Emiliano Santiago ◽  
Pablo Saldungaray ◽  
◽  
...  

The Río Neuquén Field is located between Neuquén and Río Negro provinces, Argentina. Historically, it has been a conventional oil producer, but it was converted to a tight gas producer from deeper reservoirs. The targeted geological formations are Lajas, which is already a known tight gas producer, and the less-known overlaying Punta Rosada Formation, which is the main objective of the current work. Punta Rosada presents a diverse lithology, including shaly intervals separating multiple stacked reservoirs that grade from fine-grained sandstones to conglomerates. The reservoir pressure can change from the normal hydrostatic gradient to up to 50% of overpressure. There is little evidence of movable water. The key well in this study has a comprehensive set of openhole logs, including pulsed-neutron spectroscopy data, and is supported by a full core study over 597 ft. Additionally, data from several offset wells were used, containing sidewall cores and complete sets of electrical logs. This allowed the development of rock-calibrated mineral models, adjusting the clay volume with X-ray diffraction data, porosity, and permeability with core measurements, and linking the log interpretation to dominant pore-throat radius models from MICP Purcell tests. Several water saturation models were tested, attempting to adjust the irreducible water saturation with NMR and Purcell tests at reservoir conditions. As a result, three hydraulic units were defined and characterized, identifying a strong correlation with lithofacies observed in cores and image logs. A cluster analysis model allowed the propagation of the facies to the rest of the wells (50). Finally, lithofacies were distributed in a full-field 3D model, guided by an elastic seismic inversion. In the main key well, in addition to the openhole logs and core data, a casedhole pulsed-neutron log (PNL) was also acquired, which was used to develop algorithms to generate synthetic pseudo-openhole logs such as bulk density and resistivity, integrated with the spectroscopy mineralogical information and other PNL data, to perform the petrophysical evaluation. This enables the option to evaluate wells in contingency situations where openhole logs are not possible or too risky, and also in planned situations to replace the openhole data in infill wells, saving considerable drilling rig time during this field development phase. Additionally, the calibrated casedhole model can be used in old wells. This paper explores the integration of different core and log measurements and explains the development of rock-calibrated petrophysical and rock type models addressing the characterization challenges found in tight gas sand reservoirs. The results of this study will be crucial to optimize the field development.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xin Wang ◽  
Jianhui Zeng ◽  
Kunyu Wu ◽  
Xiangcheng Gao ◽  
Yibo Qiu ◽  
...  

The pore structure and connectivity in petroleum reservoirs are controlled in part by their petrological properties. Mixed siliciclastic-carbonate rocks have complex compositions and heterogeneous spatial distributions of the various minerals. As a result, the study of the pore structure and connectivity of mixed siliciclastic-carbonate tight reservoirs has been limited. In this study, methods such as thin section microscopy, X-ray diffraction, X-ray computed tomography, low pressure N2 adsorption, and spontaneous imbibition were adopted to comprehensively analyze the petrological properties, pore structure, and connectivity of the mixed siliciclastic-carbonate tight reservoirs in the upper member of the Xiaganchaigou Formation in the Yingxi Area, Qaidam Basin. The results showed that micrometer-sized pores in mixed siliciclastic-carbonate tight reservoirs are mainly dissolution pores, and that the spatial distribution of the pores is highly heterogeneous. The average pore radius range, average throat radius range, and average coordination number range of micronmeter-sized pores are 2.09~3.42 μm, 1.32~2.19 μm, and 0.48~1.49, respectively. Restricted by the concentrated distribution of local anhydrite, the connectivity of micronmeter-sized pores develops well only in the anhydrite, showing negligible contribution to the overall reservoir connectivity. In contrast, nanometer-sized pores in the mixed siliciclastic-carbonate tight reservoirs are mainly intercrystalline pores in dolomite. The range of nanometer-sized pores diameters is mainly distributed in 1.73-31.47 nm. The pores have a smooth surface, simple structure, and relatively homogeneous spatial distribution. The dissolution of dolomite intercrystalline pores by acidic fluids increases the connectivity of the nanometer-sized pores. This paper presents genetic models for microscopic pore structures and connectivity of mixed siliciclastic-carbonate rocks, making possible the evaluation on the quality of the mixed siliciclastic-carbonate tight reservoirs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuren Hao ◽  
Jixiang Cao ◽  
Hua Zhang ◽  
Yulian Liu ◽  
Haian Liang ◽  
...  

The increasing carbon dioxide content is identified as the main cause of global warming. Capturing carbon dioxide in the atmosphere and transporting it to deep salt layer for storage have been proven and practiced in many aspects, which considered to be an effective way to reduce the content of carbon dioxide in the atmosphere. The sealing property of cap rocks is one of the key factors to determine whether CO2 can be effectively stored for a long time. In view of the disadvantages of tedious and time-consuming laboratory test methods for breakthrough pressure of cap rock, this paper explores the relationship between breakthrough pressure and other parameters such as porosity, permeability, density, specific surface area, maximum throat radius, and total organic carbon. The results show that the rock breakthrough pressure is closely related to the maximum throat radius and permeability determined by the mercury injection method, followed by the porosity and specific surface area, and less related to the density, depth, and TOC content of the rock itself. Then, with the selected parameters, a neural network model is established to predict the breakthrough pressure of cap rock, which can achieve good prediction results.


2021 ◽  
Vol 7 ◽  
pp. 1651-1656
Author(s):  
Qianhua Xiao ◽  
Zhiyuan Wang ◽  
Zhengming Yang ◽  
Zuping Xiang ◽  
Zhonghua Liu ◽  
...  

2021 ◽  
Vol 906 (1) ◽  
pp. 012004
Author(s):  
Nahla A. El Sayed ◽  
El sayed Abdel Moktader A.

Abstract Pore throat size distribution of reservoir rocks has a great importance in hydrocarbon migration and entrapment. It is used for study permeability barriers, reservoir characterization and stratigraphic traps. In the present study 51 core samples obtained from Algyo oil and gas field were conducted to MICP laboratory technique to study pore throat size distribution. The inclusive graphical measures of gain size analysis were borrowed for pore throat size examination. Various pore throat radius percentiles such as 25,50 and 75 were calculated and related to both rock porosity and permeability. The obtained models were robust and reliable to use for pore throat radius percentiles (25,50 and 75) calculation. One of these models which is predicting the 50 percentiles was verified. It shows reliable coefficients of correlation (R2 = 0.77 and 0.79) as it is estimated from permeability and porosity, respectively.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6470
Author(s):  
Hongmei Gao ◽  
Yongwei Lan ◽  
Nan Guo

To explore the effects of thermal actions on the pore structural features of granite, scanning electron microscope (SEM) and mercury injection experiments were carried out on granite after thermal treatment (25 °C to 400 °C). The pore structure was investigated from various perspectives, including the capillary pressure curve, the pore–throat ratio, the median saturation pressure, the median pore–throat radius, the porosity, the pore volume, and the pore size distribution. Based on mercury intrusion test data, the Winland model of permeability prediction was modified for a high-temperature tight granite reservoir. The results showed that: (1) As the temperature rose, the mercury injection curve was gradually flattened, and the mercury ejection efficiency gradually increased. Meanwhile, the pore–throat ratio and the median saturation pressure decreased exponentially, and the pore connectivity was enhanced. (2) The median pore–throat radius and the porosity of granite increased exponentially as the temperature increased. Above 200 °C, the median pore–throat radius and the porosity increased substantially. (3) The pore volumes of the transitional pores, mesopores and macropores, and the total pore volume inside the granite, increased as the temperature rose. Especially above 200 °C, the transitional pores and the mesopores were prominently developed, and the pore volumes of the transitional pores and the mesopores took up a significantly greater proportion of the total pore volume. (4) As the temperature rose, the pore size distribution of granite became more extensive, the pore–throat structure was obviously developed, and the pore–throat connectivity was enhanced. (5) The relationship between the micropores’ characteristic parameters and the macro-permeability in engineering was established though a modified Winland model, and the modified Winland model had a better prediction effect. The findings provide a solid basis for rock geothermal mining projects and related geotechnical engineering.


Sign in / Sign up

Export Citation Format

Share Document