scholarly journals A Study on the Hysteresis Effect and Spectral Evolution in the Mini-Outbursts of Black Hole X-Ray Binary XTE J1550-564

Author(s):  
Ai-Jun Dong ◽  
Chang Liu ◽  
Kang Ge ◽  
Xiang Liu ◽  
Qi-Jun Zhi ◽  
...  

One normal outburst and three mini-outbursts have been detected by Rossi X-ray Timing Explorer satellite after 2000 in the well-known black hole X-ray binary XTE J1550-564. In this work, we explore the hysteresis effect of the four outbursts, which is a phenomenon that a similar spectral state transition occurs at different luminosity in an outburst of black hole X-ray binary. A q-like track was found in the hardness-intensity diagram of the normal outburst in 2000 but not in the three mini-outbursts that only occur in the Low/Hard state. The results demonstrate that the hysteresis effect is not apparent in the three mini-outbursts and the X-ray spectra are harder than that of the normal outburst at the same photon count rate. Furthermore, the results of the correlation analysis show that the Γ − F2−10keV correlation of mini-outburst maintain negative in the Low/Hard state with the harder spectra than that of the normal outburst at the same X-ray flux. The X-ray spectral evolution can be well-explained by the state-transition model from the Shakura–Sunyaev disk to the advection-dominated accretion flow, which implies that the three mini-outbursts of XTE J1550-564 might originate from a smaller discrete accretion event.

10.14311/1480 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
M. Obst ◽  
K. Pottschmidt ◽  
A. Lohfink ◽  
J. Wilms ◽  
M. Böck ◽  
...  

GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.


2019 ◽  
Vol 487 (1) ◽  
pp. 1439-1446
Author(s):  
Qingcui Bu ◽  
Lian Tao ◽  
Yu Lu ◽  
Shuangnan Zhang ◽  
Liang Zhang ◽  
...  

ABSTRACT We studied the long-term evolution of the spectral–temporal correlated properties of the black hole candidate Swift J1753.5−0127 from the onset of its outburst until 2011 with the Rossi X-ray Timing Explorer (RXTE). The source stayed most of its lifetime during hard state, with occasionally transitioned to the hard intermediate state. Similar to typical black hole transients, Swift J1753.5−0127 traces a clear hard line in absolute rms–intensity diagram during the low hard state, with expected highest absolute rms, while shows a clear turn during the hard intermediate state, accompanied by lower absolute rms. Different from Cyg X-1, we found that frequency-dependent time lag increased significantly in the 0.02–3.2 Hz band during state transition in this source. The X-ray time lags in 0.02–3.2 Hz can therefore be used as indicators of state transition in this source. Type-C quasi-periodic oscillation frequency is positively related with its fractional rms and X-ray photon index, suggesting a moving inwards disc/corona scenario. We discussed the physical interpretation of our results in this paper.


2020 ◽  
Vol 499 (1) ◽  
pp. 851-861 ◽  
Author(s):  
L Zhang ◽  
D Altamirano ◽  
V A Cúneo ◽  
K Alabarta ◽  
T Enoto ◽  
...  

ABSTRACT We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348−630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348−630 is similar to that commonly observed in black hole transients. The source evolved from the hard state (HS), through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the HS in reverse during the outburst decay. At the end of the outburst, MAXI J1348−630 underwent two reflares with peak fluxes approximately one and two orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the HS only, without undergoing any state transitions, which is similar to the so-called ‘failed outbursts’. Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348−630 is a black hole candidate.


2019 ◽  
Vol 485 (2) ◽  
pp. 2744-2758 ◽  
Author(s):  
A Vahdat Motlagh ◽  
E Kalemci ◽  
T J Maccarone

Abstract We have performed a comprehensive spectral and timing analyses of Galactic black hole transients (GBHTs) during outburst decay in order to obtain the distribution of state transition luminosities. Using the archival data of the Rossi X-ray Timing Explorer (RXTE), we have calculated the weighted mean for state transition luminosities of 11 BH sources in 19 different outbursts and for disc and power law luminosities separately. We also produced histograms of these luminosities in terms of Eddington luminosity fraction (ELF) and fitted them with a Gaussian. Our results show the tightest clustering in bolometric power law luminosity with a mean logarithmic ELF of −1.70 ± 0.21 during the index transition (as the photon index starts to decrease towards the hard state). We obtained mean logarithmic ELF of −1.80 ± 0.25 during the transition to the hard state (as the photon index reaches the lowest value) and −1.50 ± 0.32 for disc-blackbody luminosity (DBB) during the transition to the hard-intermediate state (HIMS). We discussed the reasons for clustering and possible explanations for sources that show a transition luminosity significantly below or above the general trends.


2006 ◽  
Vol 2 (S238) ◽  
pp. 247-250 ◽  
Author(s):  
Z. Kuncic ◽  
R. Soria ◽  
C. K. Hung ◽  
M. C. Freeland ◽  
G. V. Bicknell

AbstractWe examine the possibility that Ultraluminous X-ray sources (ULXs) represent the extreme end of the black hole X-ray binary (XRB) population. Based on their X-ray properties, we suggest that ULXs are persistently in a high/hard spectral state and we propose a new disk–jet model that can accomodate both a high accretion rate and a hard X-ray spectrum. Our model predicts that the modified disk emission can be substantially softer than that predicted by a standard disk as a result of jet cooling and this may explain the unusually soft components that are sometimes present in the spectra of bright ULXs. We also show that relativistic beaming of jet emission can indeed account for the high X-ray luminosities of ULXs, but strong beaming produces hard X-ray spectra that are inconsistent with observations. We predict the beamed synchrotron radio emission should have a flat spectrum with a flux density ≲0.01 mJy.


Author(s):  
S E M de Haas ◽  
T D Russell ◽  
N Degenaar ◽  
S Markoff ◽  
A J Tetarenko ◽  
...  

Abstract We present quasi-simultaneous radio, (sub-)millimetre, and X-ray observations of the Galactic black hole X-ray binary, taken during its 2017–2018 outburst, where the source remained in the hard X-ray spectral state. During this outburst, GX 339−4 showed no atypical X-ray behaviour that may act as a indicator for an outburst remaining within the hard state. However, quasi-simultaneous radio and X-ray observations showed a flatter than expected coupling between the radio and X-ray luminosities (with a best fit relation of $L_{\rm radio} \propto L_{\rm X}^{0.39 \pm 0.06}$), when compared to successful outbursts from this system ($L_{\rm radio} \propto L_{\rm X}^{0.62 \pm 0.02}$). While our 2017–2018 outburst data only span a limited radio and X-ray luminosity range (∼1 order of magnitude in both, where more than 2-orders of magnitude in LX is desired), including data from other hard-only outbursts from GX 339−4 extends the luminosity range to ∼1.2 and ∼2.8 orders of magnitude, respectively, and also results in a flatter correlation (where $L_{\rm radio} \propto L_{\rm X}^{0.46 \pm 0.04}$). This result is suggestive that for GX 339−4 a flatter radio – X-ray correlation, implying a more inefficient coupling between the jet and accretion flow, could act as an indicator for a hard-only outburst. However, further monitoring of both successful and hard-only outbursts over larger luminosity ranges with strictly simultaneous radio and X-ray observations is required from different, single sources, to explore if this applies generally to the population of black hole X-ray binaries, or even GX 339−4 at higher hard-state luminosities.


2019 ◽  
Vol 488 (1) ◽  
pp. L129-L133 ◽  
Author(s):  
J Chauhan ◽  
J C A Miller-Jones ◽  
G E Anderson ◽  
W Raja ◽  
A Bahramian ◽  
...  

ABSTRACT With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535–571 over seven epochs from 2017 September 21 to October 2. Using ASKAP observations, we studied the H i absorption spectrum from gas clouds along the line of sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the H i absorption spectra for MAXI J1535–571 and an extragalactic source in the same field of view are −69 ± 4 and −89 ± 4 km s−1, respectively. This rules out the far kinematic distance ($9.3^{+0.5}_{-0.6}$ kpc), giving a most likely distance of $4.1^{+0.6}_{-0.5}$ kpc, with a strong upper limit of the tangent point at $6.7^{+0.1}_{-0.2}$ kpc. At our preferred distance, the peak unabsorbed luminosity of MAXI J1535–571 was >78 per cent of the Eddington luminosity, and shows that the soft-to-hard spectral state transition occurred at the very low luminosity of (1.2–3.4) × 10−5 times the Eddington luminosity. Finally, this study highlights the capabilities of new wide-field radio telescopes to probe Galactic transient outbursts, by allowing us to observe both a target source and a background comparison source in a single telescope pointing.


2010 ◽  
Vol 6 (S275) ◽  
pp. 299-302 ◽  
Author(s):  
Emrah Kalemci ◽  
Yoon-Young Chun ◽  
Tolga Dinçer ◽  
Michelle Buxton ◽  
John A. Tomsick ◽  
...  

AbstractMultiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission.In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of >27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Debjit Chatterjee ◽  
Arghajit Jana ◽  
Kaushik Chatterjee ◽  
Riya Bhowmick ◽  
Sujoy Kumar Nath ◽  
...  

We study the properties of the faint X-ray activity of Galactic transient black hole candidate XTE J1908+094 during its 2019 outburst. Here, we report the results of detailed spectral and temporal analysis during this outburst using observations from Nuclear Spectroscopic Telescope Array (NuSTAR). We have not observed any quasi-periodic-oscillations (QPOs) in the power density spectrum (PDS). The spectral study suggests that the source remained in the softer (more precisely, in the soft–intermediate) spectral state during this short period of X-ray activity. We notice a faint but broad Fe Kα emission line at around 6.5 keV. We also estimate the probable mass of the black hole to be 6.5−0.7+0.5M⊙, with 90% confidence.


Sign in / Sign up

Export Citation Format

Share Document