scholarly journals Cosmic Tango Between the Very Small and the Very Large: Addressing CMB Anomalies Through Loop Quantum Cosmology

Author(s):  
Abhay Ashtekar ◽  
Brajesh Gupt ◽  
V. Sreenath

While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained.

Author(s):  
Ivan Agullo ◽  
Dimitrios Kranas ◽  
V. Sreenath

Anomalies in the cosmic microwave background (CMB) refer to features that have been observed, mostly at large angular scales, and which show some tension with the statistical predictions of the standard ΛCDM model. In this work, we focus our attention on power suppression, dipolar modulation, a preference for odd parity, and the tension in the lensing parameter AL. Though the statistical significance of each individual anomaly is inconclusive, collectively they are significant, and could indicate new physics beyond the ΛCDM model. In this article, we present a brief, but pedagogical introduction to CMB anomalies and propose a common origin in the context of loop quantum cosmology.


2005 ◽  
Vol 14 (08) ◽  
pp. 1347-1364 ◽  
Author(s):  
XIULIAN WANG ◽  
BO FENG ◽  
MINGZHE LI ◽  
XUE-LEI CHEN ◽  
XINMIN ZHANG

In the "natural inflation" model, the inflaton potential is periodic. We show that Planck scale physics may induce corrections to the inflaton potential, which is also periodic with a greater frequency. Such high frequency corrections produce oscillating features in the primordial fluctuation power spectrum, which are not entirely excluded by the current observations and may be detectable in high precision data of cosmic microwave background (CMB) anisotropy and large scale structure (LSS) observations.


2019 ◽  
Vol 626 ◽  
pp. A13 ◽  
Author(s):  
F. K. Hansen ◽  
T. Trombetti ◽  
N. Bartolo ◽  
U. Natale ◽  
M. Liguori ◽  
...  

Context. Based on recent observations of the cosmic microwave background (CMB), claims of statistical anomalies in the properties of the CMB fluctuations have been made. Although the statistical significance of the anomalies remains only at the ∼2−3σ significance level, the fact that there are many different anomalies, several of which support a possible deviation from statistical isotropy, has motivated a search for models that provide a common mechanism to generate them. Aims. The goal of this paper is to investigate whether these anomalies could originate from non-Gaussian cosmological models, and to determine what properties these models should have. Methods. We present a simple isotropic, non-Gaussian class of toy models that can reproduce six of the most extensively studied anomalies. We compare the presence of anomalies found in simulated maps generated from the toy models and from a standard model with Gaussian fluctuations. Results. We show that the following anomalies, as found in the Planck data, commonly occur in the toy model maps: (1) large-scale hemispherical asymmetry (large-scale dipolar modulation), (2) small-scale hemispherical asymmetry (alignment of the spatial distribution of CMB power over all scales ℓ = [2, 1500]), (3) a strongly non-Gaussian hot or cold spot, (4) a low power spectrum amplitude for ℓ <  30, including specifically (5) a low quadrupole and an unusual alignment between the quadrupole and the octopole, and (6) parity asymmetry of the lowest multipoles. We note that this class of toy model resembles models of primordial non-Gaussianity characterised by strongly scale-dependent gNL-like trispectra.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850169
Author(s):  
M. Mardaani ◽  
K. Nozari

Polymer quantum mechanics, as a non-standard representation of quantum mechanics, is based on a symmetric sector of loop quantum gravity known as loop quantum cosmology. In this work, by analyzing the Hamiltonian and Friedmann equations in the standard Hilbert space and polymer Hilbert space, we show that polymer quantization is a successful formalism for a non-Abelian gauge field driving the cosmological inflation, the so-called gauge-flation, in order to remove initial singularity and also keeping the inflationary trajectories in this model as attractors of dynamics after the bounce.


Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Bekir Baytaş ◽  
Martin Bojowald ◽  
Sean Crowe

The paradigmatic models often used to highlight cosmological features of loop quantum gravity and group field theory are shown to be equivalent, in the sense that they are different realizations of the same model given by harmonic cosmology. The loop version of harmonic cosmology is a canonical realization, while the group-field version is a bosonic realization. The existence of a large number of bosonic realizations suggests generalizations of models in group field cosmology.


2016 ◽  
Vol 25 (08) ◽  
pp. 1642005 ◽  
Author(s):  
Emanuele Alesci ◽  
Francesco Cianfrani

Quantum reduced loop gravity is a promising framework for linking loop quantum gravity and the effective semiclassical dynamics of loop quantum cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1695-1706 ◽  
Author(s):  
DAI G. YAMAZAKI ◽  
KIYOTOMO ICHIKI ◽  
KAJINO TOSHITAKA ◽  
GRANT J. MATHEWS

The existence of a primordial magnetic field (PMF) would affect both the temperature and polarization anisotropies of the cosmic microwave background (CMB) and the formation of the large scale structure(LSS). It also provides a plausible explanation for the disparity between observations and theoretical fits to the CMB power spectrum and the LSS. Here we report on calculations of not only the numerical power spectrum of the PMF, but also the correlations between the PMF power spectrum and the primary curvature perturbations.


2017 ◽  
Vol 96 (10) ◽  
Author(s):  
Laura Castelló Gomar ◽  
Guillermo A. Mena Marugán ◽  
Daniel Martín de Blas ◽  
Javier Olmedo

Sign in / Sign up

Export Citation Format

Share Document