scholarly journals EFFECT OF BA AND TDZ IN VEGETATIVE MULTIPLICATION OF SHOOT TIPS AND NODES OF Buahinia purpurea L. In vitro

2018 ◽  
Vol 46 (2) ◽  
pp. 238-247
Author(s):  
Sumood Alhadeedy ◽  
Evet A. Youhannan
2020 ◽  
Vol 16 (1) ◽  
pp. 82-87
Author(s):  
P. KISKU ◽  
S. SAHU ◽  
U. SALMA ◽  
S. SINHA RAY ◽  
P. SAHA ◽  
...  

Author(s):  
Dariusz Kulus ◽  
Alicja Tymoszuk

AbstractThe popularity of nanoparticles (NPs) is continuously increasing. To date, however, there has been little research on the application of NPs in plant cryopreservation, i.e. storage of tissues in liquid nitrogen (LN). The aim of this study is to analyze the effect and evaluate the usefulness of gold nanoparticles (AuNPs) in regard to cryobiology studies. In vitro-derived shoot tips of Lamprocapnos spectabilis ‘Valentine’ were cryopreserved with the encapsulation-vitrification protocol. Gold nanoparticles (at 10–30 ppm concentration; 13 nm in size) were added either into the preculture medium; to the protective bead matrix during encapsulation; or to the recovery medium after rewarming of samples. The control plants were produced from cryopreserved explants non-treated with nanoparticles or treated with colloid dispersion medium without NPs. A non-LN-treated standard was also considered. The influence of AuNPs on the cryopreservation efficiency was determined by evaluating the recovery rate of explants and their morphogenic response; the membrane stability index (MSI); the concentration of pigments in shoots; and the antioxidant enzymes activity. The genetic stability of the plant material was evaluated using Start Codon Targeted Polymorphism (SCoT) markers. It was found that 10 ppm of AuNPs added into the alginate bead matrix improved the recovery level of LN-derived shoot tips (70.0%) compared to the non-NPs-treated cryopreserved control (50.5%). On the other hand, the presence of nanoparticles in the recovery medium had a deleterious effect on the survival of explants. AuNPs usually had no impact on the MSI (73.9–85.9%), except for those added into the recovery medium at the concentration of 30 ppm (decline to 55.8%). All LN-derived shoots were shorter and contained less chlorophyll and carotenoids than the untreated standard. Moreover, the application of AuNPs affected the enzymatic activity in L. spectabilis. Minor genetic variation was found in 8.6% of plants if AuNPs were added either into the preculture medium (at 10 and 20 ppm) or to the alginate matrix (at 30 ppm). In conclusion, AuNPs added at a lower concentration (10 ppm) into the protective bead matrix can significantly improve the cryopreservation efficiency in L. spectabilis with no alternation in the DNA sequence.


2010 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
M. F. Hasan ◽  
B. Sikdar

An efficient protocol for plant regeneration through multiple shoots induction from shoot tips of Polygonum hydropiper (L.) was established. The highest percentage (96.6) of multiple shoot induction and number of shoots (9.0) per culture were found on MS supplemented with 2.0 mg/l Kn. The induced shoots were excised and inoculated on to MS contains different concentrations of IBA or NAA for rooting. The highest percentage (90.0) of root induction and the highest number of roots per shoot (12.0) was found on MS having 1.0 mg/l IBA. Well rooted plantlets were acclimated properly and transplanted in the soil under natural condition, where cent per cent plantlets survived and grew successfully. Key words:  Polygonum hydropiper, Shoot tips, In vitro propagation D.O.I. 10.3329/ptcb.v20i1.5970 Plant Tissue Cult. & Biotech. 20(1): 73-79, 2010 (June)


1979 ◽  
Vol 11 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Joseph Roggemans ◽  
Marie-Christine Claes

2013 ◽  
Vol 41 (2) ◽  
pp. 638 ◽  
Author(s):  
Aylin OZUDOGRU ◽  
Diogo Pedrosa Corrêa Da SILVA ◽  
Ergun KAYA ◽  
Giuliano DRADI ◽  
Renato PAIVA ◽  
...  

The study focused on an economically-important ornamental outdoor shrub, Nandina domestica, with the aims to (i) optimize an effective in vitro conservation method, and (ii) develop a cryopreservation protocol for shoot tips by the PVS2 vitrification and droplet-vitrification techniques. For in vitro conservation of shoot cultures, the tested parameters were sucrose content in the storage medium (30, 45, 60 g/L) and storage temperature (4 °C or 8 °C). Cryopreservation was performed by applying the PVS2 vitrification solution, in 2-ml cryovials or in drops over aluminum foil strips, for 15, 30, 60 or 90 min at 0 °C, followed by the direct immersion in liquid nitrogen of shoot tips. Results show that N. domestica shoots can be conserved successfully for 6 months at both the temperatures tested, especially when 60 g/L sucrose is used in the storage medium. However, conservation at 4 °C showed to be more appropriate, as hyperhydricity was observed in post-conservation of shoots coming from storage at 8 °C. As for cryopreservation, a daily gradual increase of sucrose concentration (from 0.25 to 1.0 M) produced better protection to the samples that were stored in liquid nitrogen. Indeed, with this sucrose treatment method, a 30-min PVS2 incubation time was enough to produce, 60 days after thawing, the best recovery (47% and 50%) of shoot tips, cryopreserved with PVS2 vitrification and droplet-vitrification, respectively.


2015 ◽  
Vol 39 (3) ◽  
pp. 439-445 ◽  
Author(s):  
Laureen Michelle Houllou ◽  
Robson Antônio de Souza ◽  
Elizabete Cristina Pacheco dos Santos ◽  
José Jackson Pereira da Silva ◽  
Marta Ribeiro Barbosa ◽  
...  

ABSTRACTThe study was conducted with shoot tip explants of neem (Azadirachta indica A. Juss) to identify a viable regenerative process. Shoot tips were obtained from neem embryos cultured alternatingly in DKW medium supplemented with BAP and medium without hormones. Initial shoot development was influenced by cotyledon presence. Basal callus, excised from in vitro stem base, also presented organogenic potential. In some cases, plant lines, obtained from each seed, presented different characteristics. The most common characteristic observed in vitro was callus formation at the stem base. However, the rarest characteristics were stem callus formation and leaf senescence. The regenerated shoot tips were further subculture and rooted on a medium supplemented with IBA so that complete plants could be obtained. The rooted plants were transplanted to a greenhouse and successfully acclimatized. No significant differences in in vivo development were observed between neem plants from callus and from shoot tip propagation.


Sign in / Sign up

Export Citation Format

Share Document