scholarly journals Total Optimization of Energy Networks in a Smart City by Multi-Population Global-Best Modified Brain Storm Optimization with Migration

Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15 ◽  
Author(s):  
Mayuko Sato ◽  
Yoshikazu Fukuyama ◽  
Tatsuya Iizaka ◽  
Tetsuro Matsui

This paper proposes total optimization of energy networks in a smart city by multi-population global-best modified brain storm optimization (MP-GMBSO). Efficient utilization of energy is necessary for reduction of CO2 emission, and smart city demonstration projects have been conducted around the world in order to reduce total energies and the amount of CO2 emission. The problem can be formulated as a mixed integer nonlinear programming (MINLP) problem and various evolutionary computation techniques such as particle swarm optimization (PSO), differential evolution (DE), Differential Evolutionary Particle Swarm Optimization (DEEPSO), Brain Storm Optimization (BSO), Modified BSO (MBSO), Global-best BSO (BSO), and Global-best Modified Brain Storm Optimization (GMBSO) have been applied to the problem. However, there is still room for improving solution quality. Multi-population based evolutionary computation methods have been verified to improve solution quality and the approach has a possibility for improving solution quality. The proposed MS-GMBSO utilizes only migration for multi-population models instead of abest, which is the best individual among all of sub-populations so far, and both migration and abest. Various multi-population models, migration topologies, migration policies, and the number of sub-populations are also investigated. It is verified that the proposed MP-GMBSO based method with ring topology, the W-B policy, and 320 individuals is the most effective among all of multi-population parameters.

Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


2010 ◽  
Vol 1 (3) ◽  
pp. 34-50 ◽  
Author(s):  
P. K. Roy ◽  
S. P. Ghoshal ◽  
S. S. Thakur

This paper presents two new Particle swarm optimization methods to solve optimal power flow (OPF) in power system incorporating flexible AC transmission systems (FACTS). Two types of FACTS devices, thyristor-controlled series capacitor (TCSC) and thyristor controlled phase shifting (TCPS), are considered. In this paper, the problems of OPF with FACTS are solved by using particle swarm optimization with the inertia weight approach (PSOIWA), real coded genetic algorithm (RGA), craziness based particle swarm optimization (CRPSO), and turbulent crazy particle swarm optimization (TRPSO). The proposed methods are implemented on modified IEEE 30-bus system for four different cases. The simulation results show better solution quality and computation efficiency of TRPSO and CRPSO algorithms over PSOIWA and RGA. The study also shows that FACTS devices are capable of providing an economically attractive solution to OPF problems.


2013 ◽  
Vol 860-863 ◽  
pp. 2211-2217
Author(s):  
Si Yuan Liu ◽  
Yan Cheng Liu ◽  
Chuan Wang ◽  
Jun Jie Ren

This paper proposes a new application of dynamic particle swarm optimization (PSO) algorithm for parameter identification of vector controlled asynchronous propulsion motor (APM) in electric propulsion ship. The dynamic PSO modifies the inertia weight, learning coefficients and two independent random sequences which affect the convergence capability and solution quality, in order to improve the performance of the standard PSO algorithm. The standard PSO and dynamic PSO algorithms use measurements of the mt-axis currents, voltages of APM as the inputs to parameter identification system. The experimental results obtained compare the identified parameters with the actual parameters. There is also a comparison of the solution quality between standard PSO and dynamic PSO algorithms. The results demonstrate that the dynamic PSO algorithm is better than standard PSO algorithm for APM parameter identification. Dynamic PSO algorithm can improve the performance of ship propulsion motor under abrupt load variation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ruey-Maw Chen ◽  
Yin-Mou Shen

A depot location has a significant effect on the transportation cost in vehicle routing problems. This study proposes a hierarchical particle swarm optimization (PSO) including inner and outer layers to obtain the best location to establish a depot and the corresponding optimal vehicle routes using the determined depot location. The inner layer PSO is applied to obtain optimal vehicle routes while the outer layer PSO is to acquire the depot location. A novel particle encoding is suggested for the inner layer PSO, the novel PSO encoding facilitates solving the customer assignment and the visiting order determination simultaneously to greatly lower processing efforts and hence reduce the computation complexity. Meanwhile, a routing balance insertion (RBI) local search is designed to improve the solution quality. The RBI local search moves the nearest customer from the longest route to the shortest route to reduce the travel distance. Vehicle routing problems from an operation research library were tested and an average of 16% total routing distance improvement between having and not having planned the optimal depot locations is obtained. A real world case for finding the new plant location was also conducted and significantly reduced the cost by about 29%.


2019 ◽  
Vol 8 (2) ◽  
pp. 40
Author(s):  
Saman M. Almufti ◽  
Amar Yahya Zebari ◽  
Herman Khalid Omer

This paper provides an introduction and a comparison of two widely used evolutionary computation algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based on the previous studies and researches. It describes Genetic Algorithm basic functionalities including various steps such as selection, crossover, and mutation.  


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3149 ◽  
Author(s):  
Julian Garcia-Guarin ◽  
Diego Rodriguez ◽  
David Alvarez ◽  
Sergio Rivera ◽  
Camilo Cortes ◽  
...  

Increased use of renewable energies in smart microgrids (SMGs) present new technical challenges to system operation. SMGs must be self-sufficient and operate independently; however, when more elements are integrated into SMGs, as distributed energy resources (DER), traditional explicit mathematical formulations will demand too much data from the network and become intractable. In contrast, tools based on optimization with metaheuristics can provide near optimal solutions in acceptable times. Considering this, this paper presents the variable neighborhood search differential evolutionary particle swarm optimization (VNS-DEEPSO) algorithm to solve multi-objective stochastic control models, as SMGs system operation. The goal is to control DER while maximizing profit. In this work, DER considered the bidirectional communication between energy storage systems (ESS) and electric vehicles (EVs). They can charge/discharge power and buy/sell energy in the electricity markets. Also, they have elements such as traditional generators (e.g., reciprocating engines) and loads, with demand response/control capability. Sources of uncertainty are associated with weather conditions, planned EV trips, load forecasting and the market prices. The VNS-DEEPSO algorithm was the winner of the IEEE Congress on Evolutionary Computation/The Genetic and Evolutionary Computation Conference (IEEE-CEC/GECCO 2019) smart grid competition (with encrypted code) and also won the IEEE World Congress on Computational Intelligence (IEEE-WCCI) 2018 smart grid competition (these competitions were developed by the group GECAD, based at the Polytechnic Institute of Porto, in collaboration with Delft University and Adelaide University). In the IEEE-CEC/GECCO 2019, the relative error improved between 32% and 152% in comparison with other algorithms.


2011 ◽  
Vol 268-270 ◽  
pp. 823-828
Author(s):  
Cheng Chien Kuo ◽  
Hung Cheng Chen ◽  
Teng Fa Taso ◽  
Chin Ming Chiang

s paper presents a hybrid algorithm, the “particle swarm optimization with simulated annealing behavior (SA-PSO)” algorithm, which combines the advantages of good solution quality in simulated annealing and fast calculation in particle swarm optimization. As stochastic optimization algorithms are sensitive to its parameters, this paper introduces criteria in selecting parameters to improve solution quality. To prove the usability and effectiveness of the proposed algorithm, simulations are performed using 20 different mathematical optimized functions of different dimensions. The results made from different algorithms are then compared between the quality of the solution, the efficiency of searching for the solution and the convergence characteristics. According to the simulation results, SA-PSO obtained higher efficiency, better quality and faster convergence speed than other compared algorithms.


Sign in / Sign up

Export Citation Format

Share Document