scholarly journals Representation of Traffic Congestion Data for Urban Road Traffic Networks Based on Pooling Operations

Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 84 ◽  
Author(s):  
Sen Zhang ◽  
Shaobo Li ◽  
Xiang Li ◽  
Yong Yao

In order to improve the efficiency of transportation networks, it is critical to forecast traffic congestion. Large-scale traffic congestion data have become available and accessible, yet they need to be properly represented in order to avoid overfitting, reduce the requirements of computational resources, and be utilized effectively by various methodologies and models. Inspired by pooling operations in deep learning, we propose a representation framework for traffic congestion data in urban road traffic networks. This framework consists of grid-based partition of urban road traffic networks and a pooling operation to reduce multiple values into an aggregated one. We also propose using a pooling operation to calculate the maximum value in each grid (MAV). Raw snapshots of traffic congestion maps are transformed and represented as a series of matrices which are used as inputs to a spatiotemporal congestion prediction network (STCN) to evaluate the effectiveness of representation when predicting traffic congestion. STCN combines convolutional neural networks (CNNs) and long short-term memory neural network (LSTMs) for their spatiotemporal capability. CNNs can extract spatial features and dependencies of traffic congestion between roads, and LSTMs can learn their temporal evolution patterns and correlations. An empirical experiment on an urban road traffic network shows that when incorporated into our proposed representation framework, MAV outperforms other pooling operations in the effectiveness of the representation of traffic congestion data for traffic congestion prediction, and that the framework is cost-efficient in terms of computational resources.

Computing ◽  
2020 ◽  
Vol 102 (11) ◽  
pp. 2333-2360
Author(s):  
Tarique Anwar ◽  
Chengfei Liu ◽  
Hai L. Vu ◽  
Md. Saiful Islam ◽  
Dongjin Yu ◽  
...  

2021 ◽  
pp. 170-180
Author(s):  
Xudan Song ◽  
Jing Wang ◽  
Sijia Liu ◽  
Xiaohan Cui ◽  
Rong-rong Yin

Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 152-161 ◽  
Author(s):  
Alfréd Csikós ◽  
Tamás Tettamanti ◽  
István Varga

This work suggests a framework for modeling the traffic emissions in urban road traffic networks that are described by the Network Fundamental Diagram (NFD) concept. Traffic emission is formalized in finite spatiotemporal windows as a function of aggregated traffic variables, i.e. Total Travel Distances (TTDs) in the network and network average speed. The framework is extended for the size of an urban network during a signal cycle – the size of a window in which the network aggregated parameters are modeled in the NFD concept. Simulations have been carried out for model accuracy analysis, using the microscopic Versit+Micro model as reference. By applying the macroscopic emission model function and the traffic modeling relationships, the control objective for pollution reduction has also been formalized. Basically, multi-criteria control design has been introduced for two criteria: maximization of the TTD and minimization of traffic emissions within the network.


Author(s):  
Tamás Péter

Abstract The paper introduces a method of mathematical modeling of high scale road traffic networks, where a new special hypermatrix structure is intended to be used. The structure describes the inner–inner, inner–outer and outer–outer relations, and laws of a network area. The research examines the nonlinear equation system. The analysed model can be applied to the testing and planning of large-scale road traffic networks and the regulation of traffic systems. The elaborated model is in state space form, where the states are vehicle densities on a particular lane and the dynamics are described by a nonlinear state constrained positive system. This model can be used directly for simulation and analysis and as a starting point for investigating various control strategies. The stability of the traffic over the network can be analyzed by constructing a linear Lyapunov function and the associated theory. The model points out that in intersection control one must take the traffic density values of both the input and the output sections into account. Generally, the control of any domain has to take the density of input and output sections into consideration.


2010 ◽  
Vol 21 (02) ◽  
pp. 239-247 ◽  
Author(s):  
S. C. FOWDUR ◽  
S. D. D. V. RUGHOOPUTH

The Routing Information Protocol (RIP) and Enhanced Interior Gateway Routing Protocol (EIGRP) algorithms are widely used in the field of telecommunications for transmission of data over computer networks. Traffic Cellular Automata (TCA) is a technique that has proved to be very efficient in simulating large-scale road traffic networks. In this paper a multicell TCA model that includes anticipation and probability randomization has been hybridized with the RIP and EIGRP algorithms. Simulation was performed on a small network and the performance of these two algorithms compared and analyzed. The results show that the EIGRP algorithm, through an adaptive routing of vehicles, achieves reduced travel times, more space-headway and lower traffic densities.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 709 ◽  
Author(s):  
Zhao Huang ◽  
Jizhe Xia ◽  
Fan Li ◽  
Zhen Li ◽  
Qingquan Li

Road traffic congestion has a large impact on travel. The accurate prediction of traffic congestion has become a hot topic in intelligent transportation systems (ITS). Recently, a variety of traffic congestion prediction methods have been proposed. However, most approaches focus on floating car data, and the prediction accuracy is often unstable due to large fluctuations in floating speed. Targeting these challenges, we propose a method of traffic congestion prediction based on bus driving time (TCP-DT) using long short-term memory (LSTM) technology. Firstly, we collected a total of 66,228 bus driving records from 50 buses for 66 working days in Guangzhou, China. Secondly, the actual and standard bus driving times were calculated by processing the buses’ GPS trajectories and bus station data. Congestion time is defined as the interval between actual and standard driving time. Thirdly, congestion time prediction based on LSTM (T-LSTM) was adopted to predict future bus congestion times. Finally, the congestion index and classification (CI-C) model was used to calculate the congestion indices and classify the level of congestion into five categories according to three classification methods. Our experimental results show that the T-LSTM model can effectively predict the congestion time of six road sections at different time periods, and the average mean absolute percentage error ( M A P E ¯ ) and root mean square error ( R M S E ¯ ) of prediction are 11.25% and 14.91 in the morning peak, and 12.3% and 14.57 in the evening peak, respectively. The TCP-DT method can effectively predict traffic congestion status and provide a driving route with the least congestion time for vehicles.


Sign in / Sign up

Export Citation Format

Share Document