scholarly journals Distributed Cooperative Avoidance Control for Multi-Unmanned Aerial Vehicles

Actuators ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Sunan Huang ◽  
Rodney Swee Huat Teo ◽  
Wenqi Liu

It is well-known that collision-free control is a crucial issue in the path planning of unmanned aerial vehicles (UAVs). In this paper, we explore the collision avoidance scheme in a multi-UAV system. The research is based on the concept of multi-UAV cooperation combined with information fusion. Utilizing the fused information, the velocity obstacle method is adopted to design a decentralized collision avoidance algorithm. Four case studies are presented for the demonstration of the effectiveness of the proposed method. The first two case studies are to verify if UAVs can avoid a static circular or polygonal shape obstacle. The third case is to verify if a UAV can handle a temporary communication failure. The fourth case is to verify if UAVs can avoid other moving UAVs and static obstacles. Finally, hardware-in-the-loop test is given to further illustrate the effectiveness of the proposed method.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 924 ◽  
Author(s):  
Ahmad H. Sawalmeh ◽  
Noor Shamsiah Othman

As an autonomous vehicle, Unmanned Aerial Vehicles (UAVs) are subjected to several challenges. One of the challenges is for UAV to be able to avoid collision.  Many collision avoidance methods have been proposed to address this issue. Furthermore, in a multi-UAV system, it is also important to address communication issue among UAVs for cooperation and collaboration. This issue can be addressed by setting up an ad-hoc network among UAVs. There is also a need to consider the challenges in the deployment of UAVs, as well as, in the development of collision avoidance methods and the establishment of communication for cooperation and collaboration in a multi-UAV system. In this paper, we present general challenges in the deployment of UAV and comparison of UAV communication services based on its operating frequency. We also present major collision avoidance approaches, and specifically discuss collision avoidance approaches that are suitable for indoor applications. We also present the Flying Ad-hoc Networks (FANET) network architecture, communication and routing protocols for each Open System Interconnection (OSI) communication layers. 


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Daegyun Choi ◽  
Anirudh Chhabra ◽  
Donghoon Kim

Summary This paper proposes an intelligent cooperative collision avoidance approach combining the enhanced potential field (EPF) with a fuzzy inference system (FIS) to resolve local minima and goal non-reachable with obstacles nearby issues and provide a near-optimal collision-free trajectory. A genetic algorithm is utilized to optimize parameters of membership function and rule base of the FISs. This work uses a single scenario containing all issues and interactions among unmanned aerial vehicles (UAVs) for training. For validating the performance, two scenarios containing obstacles with different shapes and several UAVs in small airspace are considered. Multiple simulation results show that the proposed approach outperforms the conventional EPF approach statistically.


Author(s):  
Maryna Zharikova ◽  
Vladimir Sherstjuk

In this chapter, the authors propose an approach to using a heterogeneous team of unmanned aerial vehicles and remote sensing techniques to perform tactical forest firefighting operations. The authors present the three-level architecture of the multi-UAV-based forest firefighting monitoring system; features of patrolling, confirming, and monitoring missions; as well as functions of UAV in such missions. The authors consider an infrastructure for the UAV ground support and equipment used for the UAVs control. The method of the data integration into a fire-spreading model in a real-time DSS for the forest fire response is proposed. The proposed approach has been tested with the multi-UAV team that included three drones for the patrol missions, one helicopter for the confirmation mission, and one octocopter for the monitoring mission. The performance of such multi-UAV team has been studied in the laboratory conditions. The result of the experiment has shown that the proposed approach provides required credibility and efficiency of fire prediction and response.


Sign in / Sign up

Export Citation Format

Share Document