scholarly journals Real-Time Implementation of a New MPPT Control Method for a DC-DC Boost Converter Used in a PEM Fuel Cell Power System

Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 105
Author(s):  
Mohamed Derbeli ◽  
Oscar Barambones ◽  
Mohammed Yousri Silaa ◽  
Cristian Napole

Polymer electrolyte membrane (PEM) fuel cells demonstrate potential as a comprehensive and general alternative to fossil fuel. They are also considered to be the energy source of the twenty-first century. However, fuel cell systems have non-linear output characteristics because of their input variations, which causes a significant loss in the overall system output. Thus, aiming to optimize their outputs, fuel cells are usually coupled with a controlled electronic actuator (DC-DC boost converter) that offers highly regulated output voltage. High-order sliding mode (HOSM) control has been effectively used for power electronic converters due to its high tracking accuracy, design simplicity, and robustness. Therefore, this paper proposes a novel maximum power point tracking (MPPT) method based on a combination of reference current estimator (RCE) and high-order prescribed convergence law (HO-PCL) for a PEM fuel cell power system. The proposed MPPT method is implemented practically on a hardware 360W FC-42/HLC evaluation kit. The obtained experimental results demonstrate the success of the proposed method in extracting the maximum power from the fuel cell with high tracking performance.

2020 ◽  
Vol 45 (53) ◽  
pp. 29222-29234 ◽  
Author(s):  
Mohamed Derbeli ◽  
Oscar Barambones ◽  
Maissa Farhat ◽  
Jose Antonio Ramos-Hernanz ◽  
Lassaad Sbita

2015 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Verma ◽  
R. Pitchumani

Polymer electrolyte membrane (PEM) fuel cells are well suited for automotive applications compared to other types of fuel cells owing to their faster transient response and low-temperature operation. Due to rapid change in loads during automotive applications, study of dynamic behavior is of paramount importance. This study focuses on elucidating the transient response of a PEM fuel cell for specified changes in operating parameters, namely, voltage, pressure, and stoichiometry at the cathode and the anode. Transient numerical simulations are carried out for a single-channel PEM fuel cell to illustrate the response of power as the operating parameters are subjected to specified changes. These parameters are also optimized with an objective to match the power requirements of an automotive drive cycle over a certain period of time.


2005 ◽  
Vol 2 (4) ◽  
pp. 226-233 ◽  
Author(s):  
Shaoduan Ou ◽  
Luke E. K. Achenie

Artificial neural network (ANN) approaches for modeling of proton exchange membrane (PEM) fuel cells have been investigated in this study. This type of data-driven approach is capable of inferring functional relationships among process variables (i.e., cell voltage, current density, feed concentration, airflow rate, etc.) in fuel cell systems. In our simulations, ANN models have shown to be accurate for modeling of fuel cell systems. Specifically, different approaches for ANN, including back-propagation feed-forward networks, and radial basis function networks, were considered. The back-propagation approach with the momentum term gave the best results. A study on the effect of Pt loading on the performance of a PEM fuel cell was conducted, and the simulated results show good agreement with the experimental data. Using the ANN model, an optimization model for determining optimal operating points of a PEM fuel cell has been developed. Results show the ability of the optimizer to capture the optimal operating point. The overall goal is to improve fuel cell system performance through numerical simulations and minimize the trial and error associated with laboratory experiments.


2019 ◽  
Vol 30 (4) ◽  
pp. 2077-2097 ◽  
Author(s):  
Zhenxiao Chen ◽  
Derek Ingham ◽  
Mohammed Ismail ◽  
Lin Ma ◽  
Kevin J. Hughes ◽  
...  

Purpose The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells. Design/methodology/approach An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated. Findings The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell. Practical implications The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs. Originality/value The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Sign in / Sign up

Export Citation Format

Share Document