scholarly journals A Gimballed Control Moment Gyroscope Cluster Design for Spacecraft Attitude Control

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 273
Author(s):  
Charalampos Papakonstantinou ◽  
Vaios Lappas ◽  
Vassilis Kostopoulos

This paper addresses the problem of singularity avoidance in a cluster of four Single-Gimbal Control Moment Gyroscopes (SGCMGs) in a pyramid configuration when used for the attitude control of a satellite by introducing a new gimballed control moment gyroscope (GCMG) cluster scheme. Four SGCMGs were used in a pyramid configuration, along with an additional small and simple stepper motor that was used to gimbal the full cluster around its vertical (z) axis. Contrary to the use of four variable-speed control moment gyroscopes (VSCMGs), where eight degrees of freedom are available for singularity avoidance, the proposed GCMG design uses only five degrees of freedom (DoFs), and a modified steering law was designed for the new setup. The proposed design offers the advantages of SGCMGs, such as a low weight, size, and reduced complexity, with the additional benefit of overcoming the internal elliptic singularities, which create a minor attitude error. A comparison with the four-VSCMG cluster was conducted through numerical simulations, and the results indicated that the GCMG design was considerably more efficient in terms of power while achieving a better gimbal configuration at the end of the simulation, which is essential when it is desired for different manoeuvres to be consecutively executed. Additionally, for a nano-satellite of a few kilograms, the results prove that it is feasible to manufacture the GCMG concept by using affordable and lightweight commercial off-the-shelf (COTS) stepper motors.

2014 ◽  
Vol 629 ◽  
pp. 286-290
Author(s):  
Mohd Badrul Salleh ◽  
Nurulasikin Mohd Suhadis

In this paper, a three-axis attitude control of a small satellite employing control moment gyroscope (CMG) is presented. A four single gimbal control moment gyroscopes (4-SGCMG) cluster has been employed as the actuator and a proportional-derivative (PD) based attitude control approach has been utilized. The singularity robust (SR) steering law has been employed to investigate its capability in avoiding the singularity state of the CMG system with respect to the mission operation by setting the initial gimbal angle further from the singularity state. The presented control law was simulated in the MATLAB® SIMULINK® software. Results obtained from the simulation show the effectiveness of the control algorithm.


Author(s):  
Sasi Prabhakaran Viswanathan ◽  
Amit K. Sanyal

Spacecraft attitude control using an Adaptive Singularity-free Control Moment Gyroscope (ASCMG) cluster design for internal actuation is presented. A complete dynamics model is derived using the principles of variational mechanics, relaxing some common assumptions made in prior literature on control moment gyroscopes. These assumptions include perfect axisymmetry of the rotor and gimbal structures, and perfect alignment of the centers of mass of the gimbal and the rotor. The resulting dynamics display complex nonlinear coupling between the internal degrees of freedom associated with the CMG and the spacecraft base body’s rotational degrees of freedom in the absence of these assumptions. This dynamics model is further generalized to include the effects of multiple CMGs placed in the spacecraft bus, and sufficient conditions for non-singular CMG cluster configurations are obtained. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of CMGs, are provided. A control scheme using a finite number of CMGs in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented. The dynamics model of the spacecraft with a finite number of CMGs is then simplified under the assumption that the rotor is axisymmetric, in which case it is shown that singularities are avoided. As an example, the case of three CMGs with axisymmetric rotors, placed in a tetrahedron configuration inside the spacecraft, is considered. The control scheme is then numerically implemented using a geometric variational integrator and the results confirm the singularity-free property and high control authority of the ASCMG cluster. Moreover, as rotor misalignments are addressed in the dynamics model, the ASCMG cluster can adapt to them without requiring hardware changes.


2015 ◽  
Vol 6 (3) ◽  
pp. 236-240 ◽  
Author(s):  
A. R. Mkrtychyan ◽  
N. I. Bashkeev ◽  
D. O. Yakimovskii ◽  
D. I. Akashev ◽  
O. B. Yakovets

Sign in / Sign up

Export Citation Format

Share Document