scholarly journals Application of Artificial Neural Networks to Assess the Mycological State of Bulk Stored Rapeseeds

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 567
Author(s):  
Jolanta Wawrzyniak

Artificial neural networks (ANNs) constitute a promising modeling approach that may be used in control systems for postharvest preservation and storage processes. The study investigated the ability of multilayer perceptron and radial-basis function ANNs to predict fungal population levels in bulk stored rapeseeds with various temperatures (T = 12–30 °C) and water activity in seeds (aw = 0.75–0.90). The neural network model input included aw, temperature, and time, whilst the fungal population level was the model output. During the model construction, networks with a different number of hidden layer neurons and different configurations of activation functions in neurons of the hidden and output layers were examined. The best architecture was the multilayer perceptron ANN, in which the hyperbolic tangent function acted as an activation function in the hidden layer neurons, while the linear function was the activation function in the output layer neuron. The developed structure exhibits high prediction accuracy and high generalization capability. The model provided in the research may be readily incorporated into control systems for postharvest rapeseed preservation and storage as a support tool, which based on easily measurable on-line parameters can estimate the risk of fungal development and thus mycotoxin accumulation.

2012 ◽  
Vol 42 (4) ◽  
pp. 295-311 ◽  
Author(s):  
Viliam Šimor ◽  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
Ján Szolgay

Abstract This article presents an application of Artificial Neural Networks (ANNs) and multiple regression models for estimating mean annual maximum discharge (index flood) at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas ranging from 20 to 300 km2. Using the objective clustering method, the catchments were divided into ten homogeneous pooling groups; for each pooling group, mutually independent predictors (catchment characteristics) were selected for both models. The neural network was applied as a simple multilayer perceptron with one hidden layer and with a back propagation learning algorithm. Hyperbolic tangents were used as an activation function in the hidden layer. Estimating index floods by the multiple regression models were based on deriving relationships between the index floods and catchment predictors. The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation coefficients. The results showed the comparative applicability of both models with slightly better results for the index floods achieved using the ANNs methodology.


Feed-forward artificial neural networks are universal approximators of continuous functions. This property enables the use of these networks to solve learning tasks. Learning tasks in this paradigm are cast as function approximation problems. The universal approximation results for these networks require at least one hidden layer with non-linear nodes, and also require that the non-linearities be non-polynomial in nature. In this paper a non-polynomial and non-sigmoidal non-linear function is proposed as a suitable activation function for these networks. The usefulness of the proposed activation function is shown on 12 function approximation task. The obtained results demonstrate that the proposed activation function outperforms the logistic / log-sigmoid and the hyperbolic tangent activation functions.


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


2016 ◽  
Vol 19 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Nina Pavlin-Bernardić ◽  
◽  
Silvija Ravić ◽  
Ivan Pavao Matić ◽  
◽  
...  

Artificial neural networks have a wide use in the prediction and classification of different variables, but their application in the area of educational psychology is still relatively rare. The aim of this study was to examine the accuracy of artificial neural networks in predicting students’ general giftedness. The participants were 221 fourth grade students from one Croatian elementary school. The input variables for artificial neural networks were teachers’ and peers’ nominations, school grades, earlier school readiness assessment and parents’ education. The output variable was the result on the Standard Progressive Matrices (Raven, 1994), according to which students were classified as gifted or non-gifted. We tested two artificial neural networks’ algorithms: multilayer perceptron and radial basis function. Within each algorithm, a number of different types of activation functions were tested. 80% of the sample was used for training the network and the remaining 20% to test the network. For a criterion according to which students were classified as gifted if their result on the Standard Progressive Matrices was in the 95th centile or above, the best model was obtained by the hyperbolic tangent multilayer perceptron, which had a high accuracy of 100% of correctly classified non-gifted students and 75% correctly classified gifted students in the test sample. When the criterion was the 90th centile or above, the best model was also obtained by the hyperbolic tangent multilayer perceptron, but the accuracy was lower: 94.7% in the classification of non-gifted students and 66.7% in the classification of gifted students. The study has shown artificial neural networks’ potential in this area, which should be further explored. Keywords: gifted students, identification of gifted students, artificial neural networks


2014 ◽  
Vol 13 ◽  
Author(s):  
Amaury De Souza ◽  
Hamilton Germano Pavão ◽  
Ana Paula Garcia Oliveira

A estimativa da concentração do ozônio de superfície propicia a geração de dados para o planejamento de previsão da qualidade do ar, útil na gestão de saúde publica. O objetivo deste trabalho foi elaborar uma Rede Neural Artificial (RNAs) para estimar a concentração do ozônio de superfície em função de dados diários de clima. A RNA, do tipo FeedForward Multilayer Perceptron, foi treinada tomando-se por referência da concentração diária do ozônio medida. Nas camadas intermediárias e de saída foram utilizadas funções de ativação do tipo tan-sigmóide e lineares, respectivamente. O desempenho da RNA desenvolvida foi muito bom, podendo-se considerá-la como integrante do conjunto de métodos indiretos para estimativa da concentração do ozônio de superfície. O modelo proposto pode ser utilizado pelo governo público como ferramenta para ativar ações de ferramentas durante os períodos de estagnação atmosférica, quando os níveis de ozônio na atmosfera possam representar riscos à saúde publica.


Sign in / Sign up

Export Citation Format

Share Document