scholarly journals Temporal Rhythm Affects the Efficiency of Asian Citrus Psyllid (Diaphorina citri) to Acquire Huanglongbing Pathogen

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1956
Author(s):  
Yan-Jun Guo ◽  
Yi-Han Li ◽  
Zheng-Qin Su ◽  
Pei-Ping Xu ◽  
Bao-Li Qiu ◽  
...  

Huanglongbing, commonly known as citrus greening, is a devastating disease of citrus worldwide. Candidatus liberibacter asiaticus is the putative cause of citrus greening disease in China and is spread through the process of plant grafting and feeding by insect vectors. Asian citrus psyllid (Diaphorina citri) is a destructive pest due to insecticide resistance development and the main cause of dissemination of Huanglongbing. The purpose of this study was to determine the level of Huanglongbing present in Guangdong province and the acquisition of the pathogen by D. citri through feeding. Six different city areas of Guangdong province were sampled. The results demonstrated that Yunfu currently has the highest infestation rate of CLas in Guangdong province, followed by Chaozhou, Jiangmen, and Foshan. In comparison, Zhongshan and Maoming have the lowest infestation rates. Results also showed that CLas acquisition was directly proportional to the insect feeding duration. The longer an insect fed on an infested plant, the more CLas it acquired. The acquisition efficiency of the pathogen was higher at night compared to during the daytime. During the time period of 15:00–07:00 D. citri acquires more pathogens than during the period of 07:00–15:00. This study provides a basic understanding of the feeding pattern of D. citri, which aids in devising a management program for effective control of direct and indirect losses caused by D. citri.

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
El-Desouky Ammar ◽  
Justin George ◽  
Kasie Sturgeon ◽  
Lukasz L. Stelinski ◽  
Robert G. Shatters

Abstract The Asian citrus psyllid (Diaphorina citri) transmits the bacterium ‘Candidatus Liberibacter asiaticus’ (CLas), which causes huanglongbing (citrus greening) disease, in a circulative-propagative manner. We compared CLas inoculation efficiency of D. citri nymphs and adults into healthy (uninfected) citron leaves when both vector stages were reared from eggs on infected plants. The proportion of CLas-positive leaves was 2.5% for nymphs and 36.3% for adults. CLas acquisition by early instar nymphs followed by dissections of adults and 4th instar nymphs revealed that CLas bacterium had moved into the head-thorax section (containing the salivary glands) in 26.7–30.0% of nymphs and 37–45% of adults. Mean Ct values in these sections were 31.6–32.9 and 26.8–27.0 for nymphs and adults, respectively. Therefore, CLas incidence and titer were higher in the head-thorax of adults than in nymphs. Our results suggest that following acquisition of CLas by early instar D. citri nymphs, emerging adults inoculate the bacteria into citrus more efficiently than nymphs because adults are afforded a longer latent period necessary for multiplication and/or translocation of CLas into the salivary glands of the vector. We propose that CLas uses D. citri nymphs mainly for pathogen acquisition and multiplication, and their adults mainly for pathogen inoculation and spread.


2020 ◽  
Author(s):  
Sherry Miller ◽  
Teresa D. Shippy ◽  
Blessy Tamayo ◽  
Prashant S Hosmani ◽  
Mirella Flores-Gonzalez ◽  
...  

AbstractThe polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing.


EDIS ◽  
2007 ◽  
Vol 2007 (11) ◽  
Author(s):  
Michael E. Rogers ◽  
Philip A. Stansly

ENY-739, a 7-page illustrated fact sheet by Michael E. Rogers and Philip A. Stansly, provides information about the biology of this vector of citrus greening disease to aid growers in implementing integrated pest management (IPM) practices for suppressing the population in citrus-growing areas of Florida. It includes sections on identification and biology, psyllid feeding damage, pathogen transmission, management, and selected references. Published by the UF Department of Entomology and Nematology, June 2006.


Sign in / Sign up

Export Citation Format

Share Document