scholarly journals Marker-Assisted Evaluation of Two Powdery Mildew Resistance Candidate Genes in Korean Cucumber Inbred Lines

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2191
Author(s):  
Mahdi Badri Anarjan ◽  
Ikhyun Bae ◽  
Sanghyeob Lee

Two genes, CsLRR-RPK2 (CsGy5G015660) and CsaMLO8 (Csa5G623470), have been considered as powdery mildew (PM) resistance genes in cucumbers. In this study, we evaluated the involvement of the alleles of these two genes in PM resistance in 100 commercial Korean cucumber inbred lines. To achieve this, we developed cleaved amplified polymorphic sequences (CAPS) and InDel markers from CsLRR-RPK2 and CsaMLO8. Genotyping analysis indicated that the CsLRR-RPK2-CAPS marker showed a stronger correlation with the PM-resistant phenotype, with an 84% consistency compared to the CsaMLO8-InDel marker. The use of the CsaMLO8-InDel marker showed a 70% consistency between phenotype and genotype results. It was proposed that the CsLRR-RPK2-CAPS marker successfully eliminated PM-susceptible inbred lines, since both genotype and phenotype results were 100% identical. Furthermore, the present study revealed that the introduction of one of these alleles is probably enough to confer PM resistance in cucumbers. However, seven PM-resistant inbred lines harbored either CsaMLO8 or CsLRR-RPK2 alleles, indicating that there is another PM-resistant resource(s) besides CsaMLO8- and CsLRR-RPK2–originated resistance in the commercial Korean inbred lines. Our results provide reliable evidence confirming two PM-resistant candidate genes for the detection of PM resistance resources in cucumber inbred lines.

2021 ◽  
Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance, however along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper we present a new, high-density genetic map of triticale doubled haploids (DH) population ‘Grenado’ x ‘Zorro’ composed of DArT, silicoDArT and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Author(s):  
Mateusz Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


2009 ◽  
Vol 35 (5) ◽  
pp. 761-767 ◽  
Author(s):  
Gen-Qiao LI ◽  
Ti-Lin FANG ◽  
Hong-Tao ZHANG ◽  
Chao-Jie XIE ◽  
Zuo-Min YANG ◽  
...  

2007 ◽  
Vol 127 (1) ◽  
pp. 102-104 ◽  
Author(s):  
M. Korell ◽  
T. W. Eschholz ◽  
C. Eckey ◽  
D. Biedenkopf ◽  
Marc K.-H. Kogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document