scholarly journals Deficit Irrigation as a Sustainable Practice in Improving Irrigation Water Use Efficiency in Cauliflower under Mediterranean Conditions

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 732 ◽  
Author(s):  
Abdelkhalik ◽  
Pascual ◽  
Nájera ◽  
Baixauli ◽  
Pascual-Seva

Water shortage is one of the major constraints in vegetable production. Deficit irrigation is a sustainable technique that improves irrigation water use efficiency. Field studies were conducted during two growing seasons to evaluate the effects of deficit irrigation on plant growth, plant water status, productive response (curd yield and quality), irrigation water use efficiency (IWUE), and crop profitability of cauliflower. Nine irrigation treatments were used, applying 100%, 75% (moderate), or 50% (severe) of the irrigation water requirements (IWR) during the entire growing season (Continued Deficit Irrigation, CDI), or 75% and 50% of IWR during one of the following stages (Regulated Deficit Irrigation, RDI): Juvenility, curd induction, and curd growth. Severe deficit irrigation applied during juvenility and curd induction reduced the plant size, but it only led to a significant reduction of marketable yield (22%), and average curd size and weight if it was maintained throughout the crop cycle, supposing the highest IWUE (43.6 kg m−3). Moderate CDI or severe RDI during juvenility did not reduce significantly the curd yield compared to fully irrigated plants (4.4 kg m−2), thereby obtaining similar gross revenues (16,859 € ha−1) with important water savings (up to 24.3%), improving IWUE (up to 34.2 kg m−3).

2013 ◽  
Vol 864-867 ◽  
pp. 2179-2184
Author(s):  
Hong Wei Jia ◽  
Lei Lei Zheng

Irrigation water use efficiency is an important index to evaluate agricultural water use efficiency of irrigation districts, and is a basic parameter of hydraulic engineering construction and water management. However, there are many problems in practical applications of the traditional irrigation water use efficiency which is based on sufficient irrigation theory. This paper puts forward a new concept and determination method of irrigation water use efficiency based on the theories of deficit irrigation. Finally, we discussed the connotations from the project characteristics, benefit characteristics, spatial scale and time scale characteristics.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2019 ◽  
Vol 20 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Liu Dong ◽  
Zhou Lihui ◽  
Li Heng ◽  
Fu Qiang ◽  
Li Mo ◽  
...  

Abstract The evaluation of irrigation water efficiency plays an important role in the efficient use of agricultural water resources and the sustainable development of agriculture. In order to make the evaluation of irrigation water use efficiency indicators more comprehensive and scientific, this paper constructs a new optimal model of evaluation indicators. By combining the Driver-Pressure-State-Impact-Response (DPSIR) model with the Information Significance Difference (ISD) evaluation indicators model, a novel DPSIR-ISD evaluation indicators combination model was constructed. Ten riverside irrigation areas in the Sanjiang Plain of northeastern China were selected for analysis. The results show that the DPSIR-ISD model was used to reduce the number of indicators from 44 to 14; these 14 indicators reflected 91.88% of the original information. The DPSIR-ISD method proposed in this paper takes into account the completeness and simplicity of the indicators system, and is more in line with the actual situation in the field. These results can provide a simpler and more convenient system for optimizing indicators for the study of evaluation indicators used to analyze irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document