scholarly journals Effect of Scrapie Prion Infection in Ovine Bone Marrow-Derived Mesenchymal Stem Cells and Ovine Mesenchymal Stem Cell-Derived Neurons

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1137
Author(s):  
Laura García-Mendívil ◽  
Diego R. Mediano ◽  
Adelaida Hernaiz ◽  
David Sanz-Rubio ◽  
Francisco J. Vázquez ◽  
...  

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.

2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

2019 ◽  
Vol 698 ◽  
pp. 76-80 ◽  
Author(s):  
Hongna Yang ◽  
Jinhua Sun ◽  
Heng Chen ◽  
Feng Wang ◽  
Yan Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 234 ◽  
pp. 110203
Author(s):  
Shannon S. Connard ◽  
Renata L. Linardi ◽  
Kayla M. Even ◽  
Alix K. Berglund ◽  
Lauren V. Schnabel ◽  
...  

2014 ◽  
Vol 9 (3) ◽  
pp. 1005-1012 ◽  
Author(s):  
HUA-RONG HUANG ◽  
HUI ZAN ◽  
YING LIN ◽  
YING-QIANG ZHONG

2017 ◽  
Vol 13 (4) ◽  
pp. 482-490 ◽  
Author(s):  
Guilherme Galvão dos Santos ◽  
Araceli Aparecida Hastreiter ◽  
Talita Sartori ◽  
Primavera Borelli ◽  
Ricardo Ambrósio Fock

Sign in / Sign up

Export Citation Format

Share Document