scholarly journals The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3072
Author(s):  
Andrea Messina ◽  
Davide Potrich ◽  
Ilaria Schiona ◽  
Valeria Anna Sovrano ◽  
Giorgio Vallortigara

It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.

2018 ◽  
Vol 81 (3) ◽  
pp. 621-636 ◽  
Author(s):  
Aaron Cochrane ◽  
Lucy Cui ◽  
Edward M. Hubbard ◽  
C. Shawn Green

2013 ◽  
Vol 55 (12) ◽  
pp. 1109-1114 ◽  
Author(s):  
Kerstin Hellgren ◽  
Justin Halberda ◽  
Lea Forsman ◽  
Ulrika Ådén ◽  
Melissa Libertus

2021 ◽  
Author(s):  
Aaron Wacholder ◽  
Omer Acar ◽  
Anne-Ruxandra Carvunis

Ribosome profiling experiments demonstrate widespread translation of eukaryotic genomes outside of annotated protein-coding genes. However, it is unclear how much of this "noncanonical" translation contributes biologically relevant microproteins rather than insignificant translational noise. Here, we developed an integrative computational framework (iRibo) that leverages hundreds of ribosome profiling experiments to detect signatures of translation with high sensitivity and specificity. We deployed iRibo to construct a reference translatome in the model organism S. cerevisiae. We identified ~19,000 noncanonical translated elements outside of the ~5,400 canonical yeast protein-coding genes. Most (65%) of these non-canonical translated elements were located on transcripts annotated as non-coding, or entirely unannotated, while the remainder were located on the 5' and 3' ends of mRNA transcripts. Only 14 non-canonical translated elements were evolutionarily conserved. In stark contrast with canonical protein-coding genes, the great majority of the yeast noncanonical translatome appeared evolutionarily transient and showed no signatures of selection. Yet, we uncovered phenotypes for 53% of a representative subset of evolutionarily transient translated elements. The iRibo framework and reference translatome described here provide a foundation for further investigation of a largely unexplored, but biologically significant, evolutionarily transient translatome.


2001 ◽  
Vol 79 (4) ◽  
pp. 297-302 ◽  
Author(s):  
R Boonstra ◽  
L Galea ◽  
S Matthews ◽  
J M Wojtowicz

The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.Key words: neurogenesis, hippocampus, dentate gyrus, learning, memory, wild population.


Perception ◽  
2015 ◽  
Vol 45 (1-2) ◽  
pp. 44-55 ◽  
Author(s):  
Fanny Gimbert ◽  
Edouard Gentaz ◽  
Valérie Camos ◽  
Karine Mazens

2021 ◽  
Vol 44 ◽  
Author(s):  
José Luis Bermúdez

Abstract Against Clarke and Beck's proposal that the approximate number system (ANS) represents natural and rational numbers, I suggest that the experimental evidence is better accommodated by the (much weaker) thesis that the ANS represents cardinality comparisons. Cardinality comparisons do not stand in arithmetical relations and being able to apply them does not involve basic arithmetical concepts and operations.


2021 ◽  
Vol 44 ◽  
Author(s):  
Steven Gross ◽  
William Kowalsky ◽  
Tyler Burge

Abstract According to Clarke and Beck (C&B), the approximate number system (ANS) represents numbers. We argue that the ANS represents pure magnitudes. Considerations of explanatory economy favor the pure magnitudes hypothesis. The considerations C&B direct against the pure magnitudes hypothesis do not have force.


Sign in / Sign up

Export Citation Format

Share Document