scholarly journals Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 204
Author(s):  
Jordi Ribas-Maynou ◽  
Yentel Mateo-Otero ◽  
Marina Sanchez-Quijada ◽  
Sandra Recuero ◽  
Ariadna Delgado-Bermúdez ◽  
...  

Telomere length has attracted much interest as a topic of study in human reproduction; furthermore, the link between sperm telomere length and fertility outcomes has been investigated in other species. This biomarker, however, has not been much explored in other animals, such as pigs, and whether it is related to sperm quality and fertility outcomes remains unknown. The present work aimed to determine the absolute value of telomere length in pig sperm, as well as its relationship to sperm quality parameters and embryo development. Telomere length was determined through quantitative fluorescence in situ hybridization (qFISH) in 23 pig sperm samples and data were correlated to quality parameters (motility, morphology, and viability) and in vitro fertilization outcomes. We found that the mean telomere length in pig sperm was 22.1 ± 3.6 kb, which is longer than that previously described in humans. Whilst telomere length was not observed to be correlated to sperm quality variables (p > 0.05), a significant correlation between telomere length and the percentage of morulae 6 days after in vitro fertilization was observed (rs = 0.559; 95%C.I. = (−0.007 to 0.854); p = 0.047). Interestingly, this correlation was not found when percentages of early blastocysts/blastocysts (rs = 0.410; 95%C.I. = (−0.200 to 0.791); p = 0.164) and of hatching/hatched blastocysts (rs = 0.356; 95%C.I. = (− 0.260 to 0.766); p = 0.233) were considered. Through the separation of the samples into two groups by the median value, statistically significant differences between samples with shorter telomeres than the median and samples with longer telomeres than the median were found regarding development to morula (11.5 ± 3.6 vs. 21.8 ± 6.9, respectively) and to early blastocyst/blastocysts (7.6 ± 1.4 vs. 17.9 ± 12.2, respectively) (p < 0.05). In the light of these results, sperm telomere length may be a useful biomarker for embryo development in pigs, as sperm with longer telomeres lead to higher rates of morulae and blastocysts.

2006 ◽  
Vol 18 (2) ◽  
pp. 275
Author(s):  
C. Navarro-Maldonado ◽  
Y. Ducolomb-Ramirez ◽  
A. Galindo-Rodriguez ◽  
A. Rosado-Garcia

In vitro maturation and in vitro fertilization (IVM and IVF) of mammalian oocytes still show unsatisfactory results when applied to the study of embryo development. This is probably due to inadequate information about the use of media components and supplements for oocyte maturation and to a discrepancy between results obtained by focusing strictly on oocyte maturation and those that are focused on IVF. A conventional medium that provides adequate results in studies of oocyte maturation (TCM-199) contains hypoxanthine, phosphate ions, and glucose, all known to inhibit embryo development in vitro in some species. In contrast, it has been shown that a simpler medium (HECM-9) increases embryo development in bovine although its use for oocyte maturation has not been defined. This medium contains taurine (an amino acid that reduces intracellular peroxide content) and is supplemented with polyvinyl alcohol (PVA) instead of using protein components, making it a simple defined medium that reduces variability in embryo development. Adding sodium panthothenate to media also confers cell protection against reactive oxygen species. Finally, supplements such as epidermal growth factor (EGF) increase the number of oocytes that complete maturation (Metaphase II, MII) and facilitate embryo development. An adequate combination of our knowledge about in vitro maturation and fertilization of oocytes, together with the requirements for embryo development, is important for the preparation of culture media to study regulatory mechanisms for embryo development and to increase the number of viable and normal term individuals. In this study we compared the effects of HECM-9 (containing panthothenate) vs. TCM-199 (both media supplemented with PVA, EGF, and FSH/LH) on the integrated processes involving IVM and IVF. No significant differences were found between the results obtained with these media in relation to oocyte maturation (65% MII for HECM-9 vs. 71% for TCM-199); however, those oocytes matured in HECM-9 showed a highly significant difference in in vitro fertilization using a conventional IVF medium (SOFm) (25% in HECM-9 vs. 6% in TCM-199). Maturation results were relatively low but in accordance with those reported by other groups, whereas IVF results are lower than those reported in the literature, perhaps because we have been using frozen and thawed samples and do not have complete control over the sperm quality. At present, we are extending our investigation using fresh semen samples.


2002 ◽  
Vol 63 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Juan J. TarÍn ◽  
Vanessa Gómez-Piquer ◽  
Sonia PÉrez-AlbalÁ ◽  
Carlos Hermenegildo ◽  
Antonio Cano

2019 ◽  
Vol 210 ◽  
pp. 106178 ◽  
Author(s):  
Zhiqiang Ren ◽  
Weike Shaoyong ◽  
Qian Li ◽  
Lu Ma ◽  
Junying Xiao ◽  
...  

2018 ◽  
Vol 121 ◽  
pp. 21-26 ◽  
Author(s):  
Xiao-gang Weng ◽  
Ming-ming Cai ◽  
Yu-ting Zhang ◽  
Yan Liu ◽  
Zheng-ling Gao ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 209
Author(s):  
Y. Serita ◽  
C. Kubota ◽  
T. Kojima

This study tested whether embryo development yield using in vitro fertilization (IVF) could be improved by rocking cultures. Bovine ovaries were obtained at a slaughterhouse and transported to the laboratory within 6 h. Cumulus–oocyte complexes were collected and 20–25 were transferred in 100-μL drops of TCM-199 containing 10% fetal bovine serum and antibiotics under paraffin oil. Maturation was for 20–24 h at 38.5°C under 5% CO2 and 95% air in a humid atmosphere (IVM). In vitro fertilization was carried out for 6 h using frozen–thawed sperm from a single bull in modified Brackett and Oliphant (BO) medium. Presumptive zygotes were cultured in CR1aa supplemented with 10 mg mL–1 of BSA or 5% FBS for 9 d at 38.5°C under 5% CO2, 5% O2, and 90% N2 in a humid atmosphere (IVC). Rocking was performed to a height of 6 cm every 7 s using a Profile Rocker (New Brunswick Scientific Co., Edison, NJ, USA) in an incubator. Dishes were placed at a 15-cm distance from the fulcrum of the rocker. The conventional method (no rocking) served as a control, and every experiment was replicated 3 times. For Experiment 1, the effect of the period of rocking on developmental competence was examined when COC or zygotes were subjected to rocking for IVM, IVF, or IVC (IVM-move, IVF-move, and IVC-move). There were no significant differences in rates of oocyte maturation, cleavage, and development for IVM-move v. the control, or for rate of development between IVC-move and the control. However, the rate of fertilization for IVF-move was higher than that of the control (88.9 v. 67.5%; P < 0.01), and the rate of development was higher for IVF-move than for the control (39.0 v. 25.7%; P < 0.05). For Experiment 2, the effect of rocking frequency during IVF on development was determined. The IVF cultures were rocked every 7, 3.5, and 1.5 s (IVF-1move, IVF-2move, IVF-3move). The rates of cleavage on IVF-1move, IVF-2move, IVF-3move, and the control were 74.3, 69.8, 68.8, and 60.4%, and the rates of development were 39.0, 48.3, 26.2, and 25.7%, respectively. The rates of development on IVF-1move and IVF-2move were significantly different from the control and IVF-3move (P < 0.01). These results showed that rocking during IVF improved fertilization and embryo yield, and that frequency of rocking affected embryo development.


Sign in / Sign up

Export Citation Format

Share Document