Improvement of in vitro fertilization and early embryo development in mice by coculture with human fallopian tube epithelium

1991 ◽  
Vol 165 (6) ◽  
pp. 1802-1805 ◽  
Author(s):  
Jeffrey M. Goldberg ◽  
Essam Al-Dein M. Khalifa ◽  
Chad I. Friedman ◽  
Moon H. Kim
2019 ◽  
Vol 19 (4) ◽  
pp. 349-355
Author(s):  
Juan Patricio Anchordoquy ◽  
Raúl Martín Lizarraga ◽  
Juan Mateo Anchordoquy ◽  
Noelia Nikoloff ◽  
Diana Esther Rosa ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3581
Author(s):  
Anthony Estienne ◽  
Adeline Brossaud ◽  
Maxime Reverchon ◽  
Christelle Ramé ◽  
Pascal Froment ◽  
...  

Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.


2010 ◽  
Vol 22 (1) ◽  
pp. 226
Author(s):  
M. Techakumphu ◽  
V. Chankitisakul ◽  
K. Thaseephoo ◽  
T. Tharasanit

Microtubules and actin microfilaments have been demonstratedto be actively involved with fertilization and early embryo development. The objective of this study was to examine the redistribution of cytoskeleton and chromatin configurations in swamp buffalo oocytes through the initial cleavage event after in vitro fertilization. Sperm penetration was analysed at 6 h post IVF in 63 oocytes (3 replicates), whereas the chronology embryonic development in terms of the redistribution of cell cytoskeleton and chromatin configurations was studied in a total of 462 oocytes (7 to 8 replicates) at 12, 18, 24, 30, and 48 h after IVF. The oocytes were matured in vitro for 22 h. Then, IVF was performed as described previously (Totey et al. 1993). After fertilization, presumptive zygotes and embryos were fixed at various times (6, 12, 18, 24, 30, and 48 h) to examine spermatozoa penetration, redistribution of the cytoskeleton (microtubules and actin filaments), and chromatin configurations using epifluorescent microscopy. Staining was undertaken with wheat germ agglutinin to visualize the zona pellucida, monoclonal-α-tubulin-TRIT C to show the microtubules, 488 phalloidin to identify microfilaments, and DAPI to label the chromatin. At 6 h after fertilization, sperm penetration was observed in 44.4% of examined oocytes. At 12 h post IVF, maternal chromosomes of fertilized oocytes progressed to the second meiotic division and formed the female pronucleus simultaneously with the decondensation of paternal chromosomes. A dense network of microtubules was observed radiating from the base of the decondensing sperm head (referred to as sperm aster) At 18 h post IVF, the sperm chromatins became the male pronucleus. Simultaneously, the sperm aster increased in size and filled the whole ooplasm. The syngamy of the male and female pronuclei was completed by 24 h post IVF, which was associated with a dense array of microtubules. Cell cleavage was observed by 30 h post IVF. This was apparently facilitated by a dense network of actin microfilaments that formed in the middle of the dividing embryo. These results indicated that microtubules and actin microfilaments undergo changes after fertilization consistent with a crucial role during fertilization in swamp buffalo. The centrosomal material was paternally inherited. This work was supported by TRF-MAG (MRG-WII515S056) and CHE-TRF Senior Research Fund (RTA5080010).


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2858-2867 ◽  
Author(s):  
Myoungkun Jeoung ◽  
Sungeun Lee ◽  
Hee-kyung Hawng ◽  
Yong-Pil Cheon ◽  
Youn Kyung Jeong ◽  
...  

Endothelins were first identified as potent vasoactive peptides; however, diversity in the biological function of these hormones is now evident. We have identified a novel role for endothelins: a requirement for these peptides within the oviduct during fertilization and/or early embryo development. In vivo, treatment after ovulation with a dual endothelin receptor antagonist (tezosentan) decreased the number of two-cell embryos that could be collected from within the oviducts. In vitro fertilization experiments showed that gamete viability and their ability to fertilize were not affected by treatment with this antagonist, suggesting that the effect observed in vivo was mediated by the oviduct itself. Expression of mRNA for all three isoforms of the endothelins and both receptor subtypes was detectable within the oviduct. Expression of mRNA for endothelin-3 was regulated by gonadotropins in epithelial cells of the oviduct and increased specifically within the isthmus of this structure. Immunostaining revealed localization of both endothelin receptors A and B to the columnar epithelial cells within the oviduct, suggestive of a local role for endothelins in the regulation of epithelial function and ultimately oviductal secretions. A microarray analysis revealed three likely endothelin-regulated protein networks for future analysis: the TGFβ, IL-10, and CCAAT/enhancer-binding protein superfamilies. Overall, these results suggest a novel and requisite role for endothelins within the oviduct during fertilization and/or early embryo development.


Sign in / Sign up

Export Citation Format

Share Document