scholarly journals Ex Vivo Antioxidant Capacities of Fruit and Vegetable Juices. Potential In Vivo Extrapolation

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 770
Author(s):  
Alexis Matute ◽  
Jessica Tabart ◽  
Jean-Paul Cheramy-Bien ◽  
Claire Kevers ◽  
Jacques Dommes ◽  
...  

Background: In support of claims that their products have antioxidant properties, the food industry and dietary supplement manufacturers rely solely on the in vitro determination of the ORAC (oxygen radical antioxidant capacity) value, despite its acknowledged lack of any in vivo relevance. It thus appears necessary to use tests exploiting biological materials (blood, white blood cells) capable of producing physiological free radicals, in order to evaluate more adequately the antioxidant capacities of foods such as fruit and vegetable juices. Materials: Two approaches to assessing the antioxidant capacities of 21 commercial fruit and vegetable juices were compared: the ORAC assay and the “PMA–whole blood assay,” which uses whole blood stimulated by phorbol myristate acetate to produce the superoxide anion. We described in another paper the total polyphenol contents (TPCs) and individual phenolic compound contents of all the juices investigated here (Matute et al. Antioxidants 2020, 9, 1–18). Results: Ranking of the juices from highest to lowest antioxidant capacity differed considerably according to the test used, so there was no correlation (r = 0.33, p = 0.13) between the two assays when considering all juices. Although the results of the ORAC assay correlated positively with TPC (r = 0.50, p = 0.02), a much stronger correlation (r = 0.70, p = 0.004) emerged between TPC and % superoxide anion inhibition. In the PMA–whole blood assay, peonidin-3-O-glucoside, epigallocatechin gallate, catechin, and quercetin present in juices were found to inhibit superoxide anion production at concentrations below 1 µM, with a strong positive correlation. Conclusions: Associated with the determination of total and individual phenolic compounds contained in fruit and vegetable juices, the PMA–whole blood assay appears better than the ORAC assay for evaluating juice antioxidant capacity.

2017 ◽  
Vol 22 (4) ◽  
pp. 425-432 ◽  
Author(s):  
Tom Bretschneider ◽  
Andreas Harald Luippold ◽  
Helmut Romig ◽  
Daniel Bischoff ◽  
Klaus Klinder ◽  
...  

Autotaxin (ATX) is a promising drug target for the treatment of several diseases, such as cancer and fibrosis. ATX hydrolyzes lysophosphatidyl choline (LPC) into bioactive lysophosphatidic acid (LPA). The potency of ATX inhibitors can be readily determined by using fluorescence-based LPC derivatives. While such assays are ultra-high throughput, they are prone to false positives compared to assays based on natural LPC. Here we report the development of ultrafast mass spectrometry–based ATX assays enabling the measurement of data points within 13 s, which is 10 times faster than classic liquid chromatography–mass spectrometry. To this end, we set up a novel in vitro and whole-blood assay. We demonstrate that the potencies determined with these assays are in good agreement with the in vivo efficacy and that the whole-blood assay has the best predictive power. This high-throughput label-free approach paired with the translatable data quality is highly attractive for appropriate guidance of medicinal chemists for constructing strong structure-activity relationships.


2009 ◽  
Vol 212 (5) ◽  
pp. 547-556 ◽  
Author(s):  
Verena Liebers ◽  
Heike Stubel ◽  
Maria Düser ◽  
Thomas Brüning ◽  
Monika Raulf-Heimsoth

1983 ◽  
Vol 50 (04) ◽  
pp. 814-820 ◽  
Author(s):  
J A Bergeron ◽  
J M DiNovo ◽  
A F Razzano ◽  
W J Dodds

SummaryThe previously described native whole blood assay for materials in solution or suspension has been adapted to materials in a bead column configuration. These experiments showed that the glass itself accounts for little or none of the high blood-reactivity observed with conventional glass bead columns. Columns composed solely of soft glass that was “cleaned” by heat treatment (500-595° C 18 hr, electric oven) were benign toward flowing native whole blood for all variables measured (platelet count and platelet-free plasma [C14]-serotonin content, platelet factor 3 and factor XII activities, and recalcification time) with the standard contact protocol. In addition, the effluent successfully maintained perfusion of the isolated kidney, a measure of the ability of platelets to support vascular integrity. Prolonged (30 min) normothermic contact with titrated whole blood increased the subsequent reactivity of initially clean glass toward whole blood albeit to a level much less than that of conventional glass bead columns.


Sign in / Sign up

Export Citation Format

Share Document