sulfate content
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 49)

H-INDEX

30
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 612
Author(s):  
Aneta Lisowska ◽  
Barbara Filipek-Mazur ◽  
Józef Sołtys ◽  
Marcin Niemiec ◽  
Olga Gorczyca ◽  
...  

There is a potential for using sulfur waste in agriculture. The main objective of this study was to design a granular fertilizer based on waste elemental sulfur. Humic acids and halloysite were used to improve the properties and their influence on soil properties. This is the first report on the use of proposed materials for fertilizer production. The following granular fertilizers were prepared (the percentage share of component weight is given in brackets): fertilizer A (waste sulfur (95%) + halloysite (5%)), fertilizer B (waste sulfur (81%) + halloysite (5%) + humic acids (14%)), fertilizer C (waste sulfur (50%) + halloysite (50%)) and fertilizer D (waste sulfur (46%) + halloysite (46%) + humic acids (8%)). Basic properties of the obtained granulates were determined. Furthermore, the effect of the addition of the prepared fertilizers on soil pH, electrolytic conductivity, and sulfate content was examined in a 90-day incubation experiment. Enrichment with humic acids and the higher amount of halloysite increased the fertilizer properties (especially the share of larger granules and bulk density). In addition, it stabilized soil pH and increased the sulfur content (extracted with 0.01 mol·L−1 CaCl2 and Mehlich 3) in the soil.


2022 ◽  
Vol 961 (1) ◽  
pp. 012020
Author(s):  
Haneen Majed Saheb ◽  
Elham Kadhim Hilal ◽  
Kasim Mohammed Hello

Abstract Using agrowaste as a source of recycled materials is a hot topic among experts and technologists these days. Waste materials can be converted into energy and new products by using them. As a rice waste, rice husk (RH) is a rich source of pure silica that is recyclable. The pure silica in RH was sulfonated by agitating and reacting it with diluted sulfuric acid. Various sulfate concentrations were loaded on silica (5, 10, 15, and 20%), andthe catalyst was designated as RHASO4. As the sulfate content increased, the specific surface area decreased. TEM analysis showed different forms of catalyst, including spherical, cylindrical, and fibbered forms. The catalyst was used for the in-situ generation of nitrose acid to prepare a diazonium salt for aromatic coupling reactions. Our experiment indicates that azo dyes can be produced at 68 percent over the catalyst at 10 degrees Celsius, while traditional catalysts cannot produce them above 5 degrees Celsius. For the highest yield of azo dyes, a 20% sulfate loading is optimum. A simple laboratory procedure is followed to reuse a catalyst without deteriorating its properties.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 94
Author(s):  
Hui Zhao ◽  
Xianzhen Li ◽  
Xi Wang ◽  
Mianwu Meng ◽  
Xiujian Wang ◽  
...  

The purpose of this work is to investigate the effects of copper (II) sulfate on formaldehyde release and the mechanical properties of urea formaldehyde (UF) adhesive. Copper (II) sulfate has been used as a formaldehyde scavenger in UF resin, and its effects on the physical and chemical properties of UF adhesive have been studied. Moreover, the mechanical properties and formaldehyde release of plywood prepared with modified UF resin have been determined. The UF resin has been characterized by Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). FTIR spectra showed that the addition of copper (II) sulfate to the UF resin did not affect the infrared (IR) absorptions of its functional groups, implying that the structure of UF was not modified. Further results showed that: the free formaldehyde content of the UF resin by the incorporation of 3% copper (II) sulfate was 0.13 wt.%, around 71% lower than that of the control UF adhesive. With a copper (II) sulfate content of 3%, the formaldehyde release from treated plywood was 0.74 mg·L−1, around 50% lower than that from the control UF adhesive, and the bonding strength reached 1.73 MPa, around 43% higher than that of the control UF adhesive.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032065
Author(s):  
O Girikov ◽  
E Matyushenko ◽  
E Voitov

Abstract The research on the removal of sulfates from mine wastewater is presented in the article. A new purification method has been proposed that allows removing a significant part of sulfates by precipitation in the form of barium sulfate. The present studies were devoted to the removal of sulfates from mine wastewater with a sulfate content of 1050 mg/l by introducing various doses of barium-containing reagents, namely barium chloride, hydroxide and barium carbonate. Among the listed reagents, the best results were obtained, using barium chloride and hydroxide. The use of barium chloride with a dose of 2700 mg/l and barium hydroxide with a dose of 3200 mg/l made it possible to reduce the concentration of sulfates below the maximum permissible (100 mg/l) when discharged into a reservoir for fishery purposes. A reliable in operation technological scheme for removing sulfates from highly concentrated mine wastewater has been developed, which makes it possible to reduce sulfates in the treated waste liquid discharged into the reservoir to 100 mg/l and below. In this case, the purification is carried out with separation of streams - in a smaller part (about 26% of the incoming); barium chloride is introduced, in the second - barium hydroxide. After that, the streams are mixed again, settled, sent to the calciner and to the post-treatment facilities and discharged into the reservoir. The resulting sludge is stored in special landfills or is processed to extract valuable components.


2021 ◽  
Vol 325 ◽  
pp. 28-33
Author(s):  
Konstantinos Sotiriadis ◽  
Michal Hlobil

Portland-limestone cement materials are susceptible to sulfate attack at low temperature and high humidity, because such conditions facilitate the formation of thaumasite, detriment to the structural integrity of calcium silicate hydrates (C─S─H). In this work, the effect of the cation associated with sulfates, concentration of sulfate solution, and limestone content in cement, were thermodynamically simulated. MgSO4 solution is of higher risk, degrading extensively the structural integrity of C─S─H. Although this phase is partially preserved under the effect of Na2SO4 and K2SO4 solutions, extensive expansion and thaumasite formation occur. The sulfate content of the corrosive solution and the limestone content in cement are the factors mostly intensifying the attack caused by MgSO4 and Na2SO4/K2SO4 solutions, respectively.


2021 ◽  
Vol 9 (1) ◽  
pp. 3083-3091
Author(s):  
F Fahruddin ◽  
Nursiah La Nafie ◽  
Asadi Abdullah ◽  
Mustika Tuwo ◽  
A Awaluddin

Acid mine drainage can pollute the environment because it is acidic and contains toxic heavy metals. The purpose of this research was the application of a bacterial consortium to remove sulfate and reduce heavy metal lead (Pb) in acid mine drainage. The application was done in the bioreactor for acid mine drainage treatment that was treated with compost. Observations were made every five days and included observation of total bacterial growth using the Standard Plate Count (SPC) method, determination of sulfate content by gravimetry, determination of pH by use of pH meter, and determination of the concentration of heavy metal Pb using the AAS method. As a result, it was obtained that the treatment of non-sterile compost in acid mine drainage was able to reduce the initial heavy metal concentration of Pb of 84% and reduce the sulfate content by 72%, along with increasing pH and an increase in total bacterial growth. Meanwhile, sterile compost treatment was only able to reduce the Pb content by 63% and sulfate by 54%. This result indicates that the addition of compost is more effective than the treatment of sterile compost.


Author(s):  
Chang-Seon Shon ◽  
Tom Scullion ◽  
Wade Blackmon ◽  
Dichuan Zhang ◽  
Jong Ryeol Kim

Calcium-based stabilizing materials (CBSMs) such as lime and fly ash are extensively used in subgrade primarily to enhance mechanical strength and improve resistance to chemical attack, resulting in more durable roadway. The soluble sulfate phase contained in some soils, however, can react with CBSMs and form ettringite minerals. If the soil is compacted before the end of this reaction, large, unstable, and volumetric swelling can occur. Among several methods to control sulfate-induced swelling, a “mellowing” approach is typically used because of its efficient, economical, and practical benefits when dealing with calcium-based stabilization of soils with significant soluble sulfate contents. Although the mellowing method is one of the frequently used methods, little data is available on the characterization of the specified mellowing process in the high-sulfate-bearing soil during the mellowing period. A research program investigated key factors influencing the mellowing process during the mellowing period, explaining how stabilizer type and content, remixing interval, mellowing period, and temperature play a role in reducing soluble sulfate content. Moreover, for selected mixtures, the 3-dimensional volumetric expansion and retained strength were measured after the mellowing process. Laboratory test results have revealed that a single mellowing process with higher lime content and daily remixing at high temperature leads to the rapid reduction of sulfate content in the soil. Moreover, after the mellowing process, additional soil treatment with fly ash or a combination of lime and fly ash leads to lower expansion and higher retained unconfined compressive strength of the soil mixture.


Sign in / Sign up

Export Citation Format

Share Document