scholarly journals Astaxanthin Inhibits Mitochondrial Permeability Transition Pore Opening in Rat Heart Mitochondria

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 576 ◽  
Author(s):  
Yulia Baburina ◽  
Roman Krestinin ◽  
Irina Odinokova ◽  
Linda Sotnikova ◽  
Alexey Kruglov ◽  
...  

The mitochondrion is the main organelle of oxidative stress in cells. Increased permeability of the inner mitochondrial membrane is a key phenomenon in cell death. Changes in membrane permeability result from the opening of the mitochondrial permeability transition pore (mPTP), a large-conductance channel that forms after the overload of mitochondria with Ca2+ or in response to oxidative stress. The ketocarotenoid astaxanthin (AST) is a potent antioxidant that is capable of maintaining the integrity of mitochondria by preventing oxidative stress. In the present work, the effect of AST on the functioning of mPTP was studied. It was found that AST was able to inhibit the opening of mPTP, slowing down the swelling of mitochondria by both direct addition to mitochondria and administration. AST treatment changed the level of mPTP regulatory proteins in isolated rat heart mitochondria. Consequently, AST can protect mitochondria from changes in the induced permeability of the inner membrane. AST inhibited serine/threonine protein kinase B (Akt)/cAMP-responsive element-binding protein (CREB) signaling pathways in mitochondria, which led to the prevention of mPTP opening. Since AST improves the resistance of rat heart mitochondria to Ca2+-dependent stress, it can be assumed that after further studies, this antioxidant will be considered an effective tool for improving the functioning of the heart muscle in general under normal and medical conditions.

Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 437
Author(s):  
Roman Krestinin ◽  
Yulia Baburina ◽  
Irina Odinokova ◽  
Alexey Kruglov ◽  
Irina Fadeeva ◽  
...  

Mitochondria are key organelles of the cell because their main function is the capture of energy-rich substrates from the cytoplasm and oxidative cleavage with the generation of carbon dioxide and water, processes that are coupled with the synthesis of ATP. Mitochondria are subject to oxidative stress through the formation of the mitochondrial permeability transition pore (mPTP). Various antioxidants are used to reduce damage caused by oxidative stress and to improve the protection of the antioxidant system. Astaxanthin (AST) is considered to be a dietary antioxidant, which is able to reduce oxidative stress and enhance the antioxidant defense system. In the present investigation, the effect of AST on the functional state of rat heart mitochondria impaired by isoproterenol (ISO) under mPTP functioning was examined. It was found that AST raised mitochondrial respiration, the Ca2+ retention capacity (CRC), and the rate of TPP+ influx in rat heart mitochondria (RHM) isolated from ISO-injected rats. However, the level of reactive oxygen species (ROS) production increased. In addition, the concentrations of cardiolipin (CL), Mn-SOD2, and the proteins regulating mPTP rose after the injection of ISO in RHM pretreated with AST. Based on the data obtained, we suggest that AST has a protective effect in rat heart mitochondria.


2019 ◽  
Vol 487 (4) ◽  
pp. 460-464
Author(s):  
S. M. Korotkov ◽  
I. V. Brailovskaya ◽  
V. P. Nesterov ◽  
S. I. Soroko

The effect of pinacidil was studied on calcium-loaded rat heart mitochondria (RHM) in the presence of succinate and rotenone. In experiments with pinacidil, the swelling of these mitochondria increased in media with NH4NO3 or K‑acetate, but the inner membrane potential DΨmito and state 3 or 2,4-dinitrophenol-uncoupled respiration of these organelles were decreased due to opening of the mitochondrial permeability transition pore in the inner membrane. These effects were inhibited by cyclosporin A and ADP. It was concluded that the protective effect of pinacidil in the cardiac muscle ischemia/reperfusion may be associated with stimulation mitochondrial swelling and a decrease in RHM calcium overload resulted in a decrease in DΨmito due to the soft uncoupling pinacidil effect.


2013 ◽  
Vol 304 (5) ◽  
pp. H649-H659 ◽  
Author(s):  
Jiang Zhu ◽  
Mario J. Rebecchi ◽  
Qiang Wang ◽  
Peter S. A. Glass ◽  
Peter R. Brink ◽  
...  

Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.


2011 ◽  
Vol 300 (4) ◽  
pp. H1237-H1251 ◽  
Author(s):  
María C. Villa-Abrille ◽  
Eugenio Cingolani ◽  
Horacio E. Cingolani ◽  
Bernardo V. Alvarez

Inhibition of Na+/H+ exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ∼60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl2 to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl2-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca2+-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.


2009 ◽  
Vol 52 (2) ◽  
pp. 69-72 ◽  
Author(s):  
René Endlicher ◽  
Pavla Křiváková ◽  
Halka Lotková ◽  
Marie Milerová ◽  
Zdeněk Drahota ◽  
...  

Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP) is involved in induction of apoptotic and necrotic processes. We studied sensitivity of MPTP to calcium using the model of Ca2+-induced, cyclosporine A-sensitive mitochondrial swelling. Presented data indicate that the extent of mitochondrial swelling (dA520/4 min) induced by addition of 25 μM Ca2+ is seven-fold higher in liver than in heart mitochondria (0.564 ± 0.08/0.077± 0.01). The extent of swelling induced by 100 μM Ca2+ was in liver tree times higher than in heart mitochondria (0.508±0.05/ 0.173±0.02). Cyclosporine A sensitivity showed that opening of the MPTP is involved. We may thus conclude that especially at low Ca2+ concentration heart mitochondria are more resistant to damaging effect of Ca2+ than liver mitochondria. These finding thus support hypothesis that there exist tissue specific strategies of cell protection against induction of the apoptotic and necrotic processes.


Sign in / Sign up

Export Citation Format

Share Document